Publications by authors named "Marshak D"

Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots.

View Article and Find Full Text PDF

This review is a memoir by Dr. Stephen C. Massey's longtime collaborator, Dr.

View Article and Find Full Text PDF

Microglial cells are the primary resident immune cells in the retina. In healthy adults, they are ramified; that is, they have extensive processes that move continually. In adult retinas, microglia maintain the normal structure and function of neurons and other glial cells, but the mechanism underlying this process is not well-understood.

View Article and Find Full Text PDF

Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified.

View Article and Find Full Text PDF

Low yields of extracted cell-free DNA (cfDNA) from plasma limit continued development of liquid biopsy in cancer, especially in early-stage cancer diagnostics and cancer screening applications. We investigate a novel liquid-phase-based DNA isolation method that utilizes aqueous two-phase systems to purify and concentrate circulating cfDNA. The PHASIFY MAX and PHASIFY ENRICH kits were compared to a commonly employed solid-phase extraction method on their ability to extract cfDNA from a set of 91 frozen plasma samples from cancer patients.

View Article and Find Full Text PDF

As the COVID-19 pandemic progresses, there is an increasing need for rapid, accessible assays for SARS-CoV-2 detection. We present a clinical evaluation and real-world implementation of the INDICAID COVID-19 rapid antigen test (INDICAID rapid test). A multisite clinical evaluation of the INDICAID rapid test using prospectively collected nasal (bilateral anterior) swab samples from symptomatic subjects was performed.

View Article and Find Full Text PDF

In primates, broad thorny retinal ganglion cells are highly sensitive to small, moving stimuli. They have tortuous, fine dendrites with many short, spine-like branches that occupy three contiguous strata in the middle of the inner plexiform layer. The neural circuits that generate their responses to moving stimuli are not well-understood, and that was the goal of this study.

View Article and Find Full Text PDF

Rationale: Hypercalcemia is a common finding in patients with advanced-stage cancers. Paraneoplastic hypercalcemia is commonly associated with dismal prognoses, with survival rates of about 3 months. In this paper, we report on a patient with advanced chronic lymphocytic leukemia and non-small cell lung carcinoma who developed severe hypercalcemia and discuss the diagnosis and treatment of this metabolic complication.

View Article and Find Full Text PDF

Mouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express but no other connexins.

View Article and Find Full Text PDF

Parasol cells are one of the major types of primate retinal ganglion cells. The goal of this study was to describe the synaptic inputs that shape the light responses of the ON type of parasol cells, which are excited by increments in light intensity. A connectome from central macaque retina was generated by serial blockface scanning electron microscopy.

View Article and Find Full Text PDF

Midget retinal ganglion cells (RGCs) are the most common RGC type in the primate retina. Their responses have been proposed to mediate both color and spatial vision, yet the specific links between midget RGC responses and visual perception are unclear. Previous research on the dual roles of midget RGCs has focused on those comparing long (L) vs.

View Article and Find Full Text PDF

There are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3).

View Article and Find Full Text PDF

The goals of this study were to describe the morphology, neurotransmitter content and synaptic connections of neurons in primate retinas that contain the neuropeptide secretoneurin. Amacrine cells were labeled with antibodies to secretoneurin in macaque and baboon retinas. Their processes formed three distinct plexuses in the inner plexiform layer: one in the outermost stratum, one in the center and one in the innermost stratum.

View Article and Find Full Text PDF

The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum.

View Article and Find Full Text PDF

The long-term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL).

View Article and Find Full Text PDF

Amacrine cells are a diverse set of local circuit neurons of the inner retina, and they all release either GABA or glycine, amino acid neurotransmitters that are generally inhibitory. But some types of amacrine cells have another function besides inhibiting other neurons. One glycinergic amacrine cell, the Aii type, excites a subset of bipolar cells via extensive gap junctions while inhibiting others at chemical synapses.

View Article and Find Full Text PDF

The goals of these experiments were to describe the morphology and synaptic connections of amacrine cells in the baboon retina that contain immunoreactive vesicular glutamate transporter 3 (vGluT3). These amacrine cells had the morphology characteristic of knotty bistratified type 1 cells, and their dendrites formed two plexuses on either side of the center of the inner plexiform layer. The primary dendrites received large synapses from amacrine cells, and the higher-order dendrites were both pre- and postsynaptic to other amacrine cells.

View Article and Find Full Text PDF

At the University of Texas Houston Medical School, a rotational dissection system was introduced to improve coordination between the Gross Anatomy and the Introduction to Clinical Medicine (ICM) courses. Six students were assigned to each cadaver and divided into two teams. For each laboratory, one team was assigned to dissect and the other to attend ICM or study independently.

View Article and Find Full Text PDF

In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells.

View Article and Find Full Text PDF

Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity.

View Article and Find Full Text PDF

Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the nervous system, were developed. The quizzes were optional, and no credit was awarded.

View Article and Find Full Text PDF

In primates the retina receives input from histaminergic neurons in the posterior hypothalamus that are active during the day. In order to understand how this input contributes to information processing in Old World monkey retinas, we have been localizing histamine receptors (HR) and studying the effects of histamine on the neurons that express them. Previously, we localized HR3 to the tips of ON bipolar cell dendrites and showed that histamine hyperpolarizes the cells via this receptor.

View Article and Find Full Text PDF

Purpose: Previously, retinopetal axons containing histamine and dopaminergic neurons expressing histamine H(1)-receptor had been localized in mouse retinas using anatomic techniques. The goal of these experiments was to demonstrate that these receptors are functional.

Methods: Dopaminergic cells were acutely isolated from retinas of transgenic mice expressing red fluorescent protein under control of the tyrosine hydroxylase promoter and loaded with the calcium indicator Fura-2.

View Article and Find Full Text PDF