In nuclear and radiological incidents, overexposure to ionizing radiation is life-threatening. It is evident that radiation depletes blood cells and increases circulating cytokine/chemokine concentrations as well as mortality. While microglia cells of female mice have been observed to be less damaged by radiation than in male mice, it is unclear whether sex affects physio-pathological responses in the bone marrow (BM) and gastrointestinal system (GI).
View Article and Find Full Text PDFRadiation combined injury (RCI, radiation exposure coupled with other forms of injury, such as burn, wound, hemorrhage, blast, trauma and/or sepsis) comprises approximately 65% of injuries from a nuclear explosion, and greatly increases the risk of morbidity and mortality when compared to that of radiation injury alone. To date, no U.S.
View Article and Find Full Text PDFExposure to ionizing radiation (radiation injury, RI) in nuclear-related episode is evident to be life-threatening. RI occurs at levels of organs, tissues, cytosols, or nucleus. Their mechanisms are still not fully understood.
View Article and Find Full Text PDFBackground: Compared to radiation injury alone (RI), radiation injury combined wound (CI) further enhances acute radiation syndrome and subsequently mortality. We previously reported that therapy with Ghrelin, the 28-amino-acid-peptide secreted from the stomach, significantly increased 30-day survival and mitigated hematopoietic death by enhancing and sustaining granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in the blood and bone marrow; increasing circulating white blood cell depletion; inhibiting splenocytopenia; and accelerating skin-wound healing on day 30 after CI. Herein, we aimed to study the efficacy of Ghrelin on intestinal injury at early time points after CI.
View Article and Find Full Text PDFBackground: Radiation injury combined wound (CI) enhances acute radiation syndrome and subsequently mortality as compared to radiation injury alone (RI). We previously reported that ghrelin (a 28-amino-acid-peptide secreted from the stomach) treatment significantly increased a 30-day survival, mitigated hematopoietic death, circulating white blood cell (WBC) depletion and splenocytopenia and accelerated skin-wound healing on day 30 after CI. Herein, we aimed to study the ghrelin efficacy at early time points after CI.
View Article and Find Full Text PDFHemorrhage following whole-body γ-irradiation in a combined injury (CI) model increases mortality compared to whole-body γ-irradiation alone (RI). The decreased survival in CI is accompanied by increased bone marrow injury, decreased hematocrit, and alterations of miRNA in the kidney. In this study, our aim was to examine cytokine homeostasis, susceptibility to systemic bacterial infection, and intestinal injury.
View Article and Find Full Text PDFExposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice.
View Article and Find Full Text PDF