Publications by authors named "Marsel V Zagidullin"

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium and in meteorites such as Murchison and Allende and signify the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles (soot particles, interstellar grains). However, the predicted lifetime of interstellar PAHs of some 10 years imply that PAHs should not exist in extraterrestrial environments suggesting that key mechanisms of their formation are elusive. Exploiting a microchemical reactor and coupling these data with computational fluid dynamics (CFD) simulations and kinetic modeling, we reveal through an isomer selective product detection that the reaction of the resonantly stabilized benzyl and the propargyl radicals synthesizes the simplest representative of PAHs - the 10π Hückel aromatic naphthalene (CH) molecule - the novel Propargyl Addition-BenzAnnulation (PABA) mechanism.

View Article and Find Full Text PDF

The simplest polycyclic aromatic hydrocarbon (PAH) carrying a five-membered ring-9H-fluorene (C H )-is produced isomer-specifically in the gas phase by reacting benzyl (C H ⋅) with phenyl (C H ⋅) radicals in a pyrolytic reactor coupled with single photon ionization mass spectrometry. The unconventional mechanism of reaction is supported by theoretical calculations, which first produces diphenylmethane and unexpected 1-(6-methylenecyclohexa-2,4-dienyl)benzene intermediates (C H ) accessed via addition of the phenyl radical to the ortho position of the benzyl radical. These findings offer convincing evidence for molecular mass growth processes defying conventional wisdom that radical-radical reactions are initiated through recombination at their radical centers.

View Article and Find Full Text PDF

Resonantly stabilized free radicals (RSFRs) have been contemplated as fundamental molecular building blocks and reactive intermediates in molecular mass growth processes leading to polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanoparticles on Earth and in deep space. By combining molecular beams and computational fluid dynamics simulations, we provide compelling evidence on the formation of benzene via the cyclopentadienyl-methyl reaction and of naphthalene through the cyclopentadienyl self-reaction, respectively. These systems offer benchmarks for the conversion of a five-membered ring to the 6π-aromatic (benzene) and the generation of the simplest 10π-PAH (naphthalene) at elevated temperatures.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) have been invoked in fundamental molecular mass growth processes in our galaxy. We provide compelling evidence of the formation of the very first ringed aromatic and building block of PAHs-benzene-via the self-recombination of two resonantly stabilized propargyl (CH) radicals in dilute environments using isomer-selective synchrotron-based mass spectrometry coupled to theoretical calculations. Along with benzene, three other structural isomers (1,5-hexadiyne, fulvene, and 2-ethynyl-1,3-butadiene) and -benzyne are detected, and their branching ratios are quantified experimentally and verified with the aid of computational fluid dynamics and kinetic simulations.

View Article and Find Full Text PDF

This work presents quantum chemical G3(MP2,CC)//B2PLYPD3/6-311G(d,p) calculations of the potential energy surface for the indenyl (CH) + cyclopentadienyl (CH) reaction followed by unimolecular decomposition of the CH radicals formed as the primary products, as well as the Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations to predict temperature- and pressure-dependent reaction rate constants and product branching ratios. The reaction begins with the barrierless recombination of indenyl and cyclopentadienyl forming a CH molecule with a new C-C bond connecting two five-membered rings, which subsequently dissociates to CH radicals by H losses. The primary products of the CH + CH → CH + H reaction can directly decompose by another H loss to benzofulvalene, and this pathway is most favorable in terms of the entropy factor and hence is preferable at higher temperatures.

View Article and Find Full Text PDF

A synthetic route to racemic helicenes via a vinylacetylene mediated gas phase chemistry involving elementary reactions with aryl radicals is presented. In contrast to traditional synthetic routes involving solution chemistry and ionic reaction intermediates, the gas phase synthesis involves a targeted ring annulation involving free radical intermediates. Exploiting the simplest helicene as a benchmark, we show that the gas phase reaction of the 4-phenanthrenyl radical ([CH]) with vinylacetylene (CH) yields [4]-helicene (CH) along with atomic hydrogen via a low-barrier mechanism through a resonance-stabilized free radical intermediate (CH).

View Article and Find Full Text PDF

Rate constants for singlet oxygen collision induced emission of the a1Δg-X3Σ-g transition at 1.27 μm were measured for CO2, N2, SF6, and rare gases as collisional partners. Photolysis of ozone by 266 nm laser radiation produced singlet oxygen.

View Article and Find Full Text PDF

The formation of the simplest polycyclic aromatic hydrocarbon (PAH), naphthalene (CH), was explored in a high-temperature chemical reactor under combustion-like conditions in the phenyl (CH)-vinylacetylene (CH) system. The products were probed utilizing tunable vacuum ultraviolet light by scanning the photoionization efficiency (PIE) curve at a mass-to-charge m/ z = 128 (CH) of molecules entrained in a molecular beam. The data fitting with PIE reference curves of naphthalene, 4-phenylvinylacetylene (CHCCCH), and trans-1-phenylvinylacetylene (CHCHCHCCH) indicates that the isomers were generated with branching ratios of 43.

View Article and Find Full Text PDF

The hydrogen-abstraction/acetylene-addition (HACA) mechanism has been central for the last decades in attempting to rationalize the formation of polycyclic aromatic hydrocarbons (PAHs) as detected in carbonaceous meteorites such as in Murchison. Nevertheless, the basic reaction mechanisms leading to the formation of even the simplest tricyclic PAHs like anthracene and phenanthrene are still elusive. Here, by exploring the previously unknown chemistry of the ortho-biphenylyl radical with acetylene, we deliver compelling evidence on the efficient synthesis of phenanthrene in carbon-rich circumstellar environments.

View Article and Find Full Text PDF

Molecular iodine dissociates in the presence of O(2)((1)Δ) and O(2)((1)Σ) molecules, but the mechanism of this process is not completely understood. In this paper, using flow tube experiments, we studied the initiation stage of iodine dissociation. Absolute spectral irradiance measurements were employed for measurements of concentrations of electronically excited particles.

View Article and Find Full Text PDF