GLI1 expression is broadly accepted as a marker of Hedgehog pathway activation in tumors. Efficacy of Hedgehog inhibitors is essentially limited to tumors bearing activating mutations of the pathway. GLI2, a critical Hedgehog effector, is necessary for GLI1 expression and is a direct transcriptional target of TGF-β/SMAD signaling.
View Article and Find Full Text PDFThe Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells.
View Article and Find Full Text PDFBackground: Tyrosinase-Related Protein 2 (TRP2) is an enzyme involved in melanogenesis, that also exerts proliferative, anti-apoptotic and immunogenic functions in melanoma cells. TRP2 transcription is regulated by the melanocytic master transcription factor MITF. GLI2, a transcription factor that acts downstream of Hedgehog signaling, is also a direct transcriptional target of the TGF-β/SMAD pathway that contributes to melanoma progression and exerts transcriptional antagonistic activities against MITF.
View Article and Find Full Text PDFMultiple myeloma (MM) is still an incurable hematological malignancy. Despite recent progress due to new anti-myeloma agents, the pathology is characterized by a high frequency of de novo or acquired resistance. Delineating the mechanisms of MM resistance is essential for therapeutic advances.
View Article and Find Full Text PDFMultiple myeloma (MM) is a malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Despite extensive efforts to design drugs targeting tumoral cells and their microenvironment, MM remains an incurable disease for which new therapeutic strategies are needed. We demonstrated here that antiestrogens (AEs) belonging to selective estrogen receptor modulators family induce a caspase-dependent apoptosis and trigger a protective autophagy.
View Article and Find Full Text PDFYAP and its paralog protein TAZ are downstream effectors of the Hippo pathway. Both are amplified in many human cancers and promote cell proliferation and epithelial-mesenchymal transition. Little is known about the status of the Hippo pathway in cutaneous melanoma.
View Article and Find Full Text PDFIn melanoma cells, high expression of the transcription factor GLI2 is associated with increased invasive potential and loss of E-cadherin expression, an event reminiscent of the epithelial-to-mesenchymal transition (EMT). Herein, we provide evidence that GLI2 represses E-cadherin gene (CDH1) expression in melanoma cells via distinct mechanisms, enhancing transcription of the EMT-activator ZEB1 and cooperative repression of CDH1 gene transcription via direct binding of both GLI2 and ZEB1 to two closely positioned Kruppel-like factor-binding sites within the CDH1 promoter. GLI2 silencing rescued CDH1 expression except in melanoma cell lines in which the CDH1 promoter was hypermethylated.
View Article and Find Full Text PDFBiochem Pharmacol
February 2013
In breast cancer (BC) epithelial cells, the mitogenic action of estradiol is transduced through binding to two receptors, ERα and ERβ, which act as transcription factors. Anti-estrogens (AEs) and aromatase inhibitors (AIs) are used clinically to arrest the estrogen-dependent growth of BC. In the case of AE or AI resistance, Herceptin or lapatinib may be used to inhibit growth factors.
View Article and Find Full Text PDFFor many years, nanocarriers have been investigated to modify pharmacokinetics and biodistribution of various active molecules. In the cancer domain, one of the biggest challenges still remains the improvement of the therapeutic index, often too low, for the majority of antitumor drugs. The application of nanotechnologies for the treatment and the diagnosis of cancers are nowadays currently developed, or under development, and liposomes play an important role in the history of nanodevices.
View Article and Find Full Text PDFThe melanocyte-specific transcription factor M-MITF is involved in numerous aspects of melanoblast lineage biology including pigmentation, survival, and migration. It plays complex roles at all stages of melanoma progression and metastasis. We established previously that GLI2, a Kruppel-like transcription factor that acts downstream of Hedgehog signaling, is a direct transcriptional target of the TGF-β/SMAD pathway and contributes to melanoma progression, exerting antagonistic activities against M-MITF to control melanoma cell invasiveness.
View Article and Find Full Text PDFEur J Pharm Biopharm
November 2011
We have designed an amphiphilic prodrug of the anticancer agent gemcitabine (dFdC), by covalent coupling to squalene. This bioconjugate, which self-assembled into nanoparticles (NPs) in water, was previously found to display an impressive anticancer activity both in vitro and in vivo. The present study aims to investigate the impact of SQdFdC nanoparticles on cellular membranes.
View Article and Find Full Text PDFBackground: Trichostatin A (TSA) is one of the most potent histone deacetylase inhibitors (HDACi) in vitro but it lacks biological activity in vivo when injected intravenously owing to its fast metabolism.
Materials And Methods: TSA was incorporated into Stealth® liposomes (TSA-lipo) at a high loading and its anticancer activity was evaluated in several types of breast cancer cells and xenografts.
Results: In estrogen receptor α (ERα)-positive MCF-7 and T47-D cells, TSA induced a long-term degradation of cyclin A and a proteasome-dependent loss of ERα and cyclin D1, allowed derepression of p21WAF1/CIP1, HDAC1 and RhoB GTPase, concomitantly with blockade in G2/M of the cell cycle and apoptosis induction.
Eur J Pharm Biopharm
September 2011
The aim was to synthesize and characterize fucoidan-coated poly(isobutylcyanoacrylate) nanoparticles. The nanoparticles were prepared by anionic emulsion polymerization (AEP) and by redox radical emulsion polymerization (RREP) of isobutylcyanoacrylate using fucoidan as a new coating material. The nanoparticles were characterized, and their cytotoxicity was evaluated in vitro on J774 macrophage and NIH-3T3 fibroblast cell lines.
View Article and Find Full Text PDFHigh energy ball milling (HEBM) has been used for the first time to prepare PEGylated magnetite-silica (Fe(3)O(4)-SiO(2)) nanocomposites intended to be used for biological purposes. Surface amine groups were introduced by a silanization reaction involving 3-aminopropyl triethoxysilane (APTS) followed by PEGylation to yield long-term stable and stealth nanocomposites of 200nm in diameter. The efficient coverage by PEG chains was shown by isothermal titration calorimetry (ITC) where PEGylated nanocomposites did not interact with BSA compared to non-PEGylated counterparts which led to a significant change in enthalpy.
View Article and Find Full Text PDFAn oral insulin delivery system based on methyl-β-cyclodextrin (MCD) complexed insulin encapsulated polymethacrylic acid (PMAA) hydrogel microparticles was evaluated in this investigation. Poly(methacrylic acid)-chitosan-polyethylene glycol (PCP) microparticles were prepared by ionic gelation method. The insulin-MCD (IC) complex prepared was characterized by fluorescence spectroscopic and isothermal titration micro-calorimeteric (ITC) methods.
View Article and Find Full Text PDFWe have designed an amphiphilic prodrug of gemcitabine (dFdC) by its covalent coupling to a derivative of squalene, a natural lipid. The resulting bioconjugate self-assembled spontaneously in water as nanoparticles that displayed a promising in vivo anticancer activity. The aim of the present study was to provide further insight into the in vitro subcellular localization and on the metabolization pathway of the prodrug.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors (HDACi) of the class I trichostatin A (TSA), CG1521 (CG), and PXD101 (PXD) were incorporated at a high rate (approximately 1mM) in liposomes made of egg phosphatidylcholine/cholesterol/distearoylphosphoethanolamine-polyethylenglycol(2000) (64:30:6). Physicochemical parameters (size, zeta potential, loading, stability, release kinetics) of these HDACi-loaded pegylated liposomes were optimized and their cytotoxicity (MTT test) was measured in MCF-7, T47-D, MDA-MB-231 and SkBr3 breast cancer cell lines. In MCF-7 cells, TSA and PXD were efficient inducers of proteasome-mediated estradiol receptor alpha degradation and they both affected estradiol-induced transcription (TSA>PXD) contrary to CG.
View Article and Find Full Text PDFBackground: Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM) and always associated with mantle cell lymphoma (MCL). CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive.
View Article and Find Full Text PDFRhodamine B-tagged poly(alkyl cyanoacrylate) amphiphilic copolymers have been synthesised, characterised and successfully used to prepare fluorescent nanoparticles for human brain endothelial cell imaging, allowing their uptake and intracellular trafficking to be finely observed.
View Article and Find Full Text PDFPurpose: To determine the better liposomal formulation incorporating the active metabolite of tamoxifen, 4-hydroxy-tamoxifen (4HT) and the biological impact of 4HT-pH-gradient liposomes on response to in vivo treatment.
Methods: Several pegylated liposomes were formulated by varying the composition of lipids, increasing external pH from 7.4 to 9.
In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications.
View Article and Find Full Text PDF