It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates.
View Article and Find Full Text PDFNitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen into the atmosphere use the oxidizing power of NO to activate inert ammonium into hydrazine (N2H4). Here, we describe an enzyme from the anammox bacterium Kuenenia stuttgartiensis that uses a novel pathway to make NO from hydroxylamine.
View Article and Find Full Text PDFRespiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc3 (flavocytochrome c3) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc3.
View Article and Find Full Text PDFProtein-protein interactions are well-known to regulate enzyme activity in cell signaling and metabolism. Here, we show that protein-protein interactions regulate the activity of a respiratory-chain enzyme, CymA, by changing the direction or bias of catalysis. CymA, a member of the widespread NapC/NirT superfamily, is a menaquinol-7 (MQ-7) dehydrogenase that donates electrons to several distinct terminal reductases in the versatile respiratory network of Shewanella oneidensis .
View Article and Find Full Text PDFThe multiheme cytochromes from Thioalkalivibrio nitratireducens (TvNiR) and Escherichia coli (EcNrfA) reduce nitrite to ammonium. Both enzymes contain His/His-ligated hemes to deliver electrons to their active sites, where a Lys-ligated heme has a distal pocket containing a catalytic triad of His, Tyr, and Arg residues. Protein-film electrochemistry reveals significant differences in the catalytic properties of these enzymes.
View Article and Find Full Text PDFShewanella species are isolated from the oxic/anoxic regions of seawater and aquatic sediments where redox conditions fluctuate in time and space. Colonization of these environments is by virtue of flexible respiratory chains, many of which are notable for the ability to reduce extracellular substrates including the Fe(III) and Mn(IV) contained in oxide and phyllosilicate minerals. Shewanella oneidensis MR-1 serves as a model organism to consider the biochemical basis of this flexibility.
View Article and Find Full Text PDFBackground: SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown.
Results: Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II).
Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via 'porin-cytochrome' electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved.
View Article and Find Full Text PDFCymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site.
View Article and Find Full Text PDFLittle is known about enzymatic quinone-quinol interconversions in the lipid membrane when compared with our knowledge of substrate transformations by globular enzymes. Here, the smallest example of a quinol dehydrogenase in nature, CymA, has been studied. CymA is a monotopic membrane tetraheme c-type cytochrome belonging to the NapC/NirT family and central to anaerobic respiration in Shewanella sp.
View Article and Find Full Text PDFMembrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J.
View Article and Find Full Text PDFIn protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.
View Article and Find Full Text PDFThe active site of the bacterial nitric oxide reductase from Paracoccus denitrificans contains a dinuclear centre comprising heme b₃ and non heme iron (Fe(B)). These metal centres are shown to be at isopotential with midpoint reduction potentials of E(m) ≈ +80 mV. The midpoint reduction potentials of the other two metal centres in the enzyme, heme c and heme b, are greater than the dinuclear centre suggesting that they act as an electron receiving/storage module.
View Article and Find Full Text PDFNrfA is a pentahaem cytochrome present in a wide-range of γ-, δ- and ε-proteobacteria. Its nitrite and nitric oxide reductase activities have been studied extensively and contribute to respiratory nitrite ammonification and nitric oxide detoxification respectively. Sulfite is a third substrate for NrfA that may be encountered in the micro-oxic environments where nrfA is expressed.
View Article and Find Full Text PDFA nitroxide spin label (SL) has been used to probe the electron spin relaxation times and the magnetic states of the oxygen-binding heme-copper dinuclear site in Escherichia coli cytochrome bo(3), a quinol oxidase (QO), in different oxidation states. The spin lattice relaxation times, T(1), of the SL are enhanced by the paramagnetic metal sites in QO and hence show a strong dependence on the oxidation state of the latter. A new, general form of equations and a computer simulation program have been developed for the calculation of relaxation enhancement by an arbitrary fast relaxing spin system of S ≥ 1/2.
View Article and Find Full Text PDFHeme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein.
View Article and Find Full Text PDFPFV (protein film voltammetry) allows kinetic analysis of redox and coupled-chemical events. However, the voltammograms report on the electron transfer through a flow of electrical current such that simultaneous spectroscopy is required for chemical insights into the species involved. Mesoporous nanocrystalline SnO(2) electrodes provide opportunities for such 'spectroelectrochemical' analyses through their high surface area and optical transparency at visible wavelengths.
View Article and Find Full Text PDFThe pentaheme containing cytochrome, NrfA, from Escherichia coli catalyzes the six-electron reduction of nitrite and the five-electron reduction of nitric oxide. Crystallographic and spectroscopic studies have provided a structural framework for these mechanisms. The active site includes a high-spin heme, and four low-spin, bis-his coordinated hemes are positioned to facilitate intra- and intermolecular electron exchange.
View Article and Find Full Text PDFDuodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b(561) family.
View Article and Find Full Text PDFA search for conformational changes at the cytosolic entrance to the proton channels of the heme-copper quinol oxidase (QO), cytochrome bo3, E. coli, has been carried out using site directed nitroxide spin labeling (SDSL) of cysteine residues. These were positioned at R134 and R309, on loops that link helices II and III and VI and VII at the entrances to the D and K proton channels, respectively.
View Article and Find Full Text PDFHemoproteins have been recognized for nearly a century and are ubiquitous components of cellular organisms. Despite our familiarity with these proteins, defining the functional role of a given heme can still present considerable challenges. In this situation, magnetic circular dichroism (MCD) is a technique of choice because it has the capacity to define heme oxidation, spin, and ligation states in solution and at ambient temperature.
View Article and Find Full Text PDFBacterial nitric oxide reductases are integral membrane proteins that catalyze the reduction of two molecules of nitric oxide to nitrous oxide and water. They are diverged members of the superfamily of heme/copper oxidases. The enzyme from Paracoccus denitrificans (NorBC) contains two subunits; NorB comprises the membrane-integrated active site, which harbors a heme iron/non-heme iron dinuclear center.
View Article and Find Full Text PDFNitrogenase is a two-component metalloenzyme that catalyzes a MgATP hydrolysis driven reduction of substrates. Aluminum fluoride plus MgADP inhibits nitrogenase by stabilizing an intermediate of the on-enzyme MgATP hydrolysis reaction. We report here the redox properties and electron paramagnetic resonance (EPR) signals of the aluminum fluoride-MgADP stabilized nitrogenase complex of Azotobacter vinelandii.
View Article and Find Full Text PDFAssimilatory sulfite reductase contains a sirohaem that is very weakly coupled to a [4Fe-4S] cubane, i.e. five iron atoms in total.
View Article and Find Full Text PDFThe prismane protein of Desulfovibrio vulgaris (Hildenborough) contains a putative [6Fe-6S] cluster. This novel iron-sulfur cluster has been characterized here by magnetic circular dichroism (MCD) spectroscopy. Three paramagnetic redox states of the cluster, [6Fe-6S]5+, [6Fe-6S]4+ and [6Fe-6S]3+, each show a distinctive low-temperature MCD spectrum which is unlike that observed for any other iron-sulfur clusters.
View Article and Find Full Text PDF