Transmission electron microscopy (TEM) is an established tool used for the investigation of defects in materials. Traditionally, diffraction contrast techniques-two-beam bright-field and weak-beam dark-field-have been used to image defects due to contrast sensitivity from weak lattice strains. Use of these methods entail an intricate tilt series of imaging using different diffracting vectors, g, to verify the g•b invisibility criterion relative to the different defect types and habit planes inherent to the material.
View Article and Find Full Text PDFMany methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation.
View Article and Find Full Text PDFThe intermediate voltage electron microscope-tandem user facility in the Electron Microscopy Center at Argonne National Laboratory is described. The primary purpose of this facility is electron microscopy with in situ ion irradiation at controlled sample temperatures. To illustrate its capabilities and advantages a few results of two outside user projects are presented.
View Article and Find Full Text PDF