The metastable hypermassive neutron star produced in the coalescence of two neutron stars can copiously produce axions that radiatively decay into O(100) MeV photons. These photons can form a fireball with characteristic temperature smaller than 1 MeV. By relying on x-ray observations of GW170817/GRB 170817A with CALET CGBM, Konus-Wind, and Insight-HXMT/HE, we present new bounds on the axion-photon coupling for axion masses in the range 1-400 MeV.
View Article and Find Full Text PDFIn this Letter we begin the study of visible dark sector signals coming from binary neutron star mergers. We focus on dark photons emitted in the 10 ms-1 s after the merger, and show how they can lead to bright transient γ-ray signals. The signal will be approximately isotropic, and for much of the interesting parameter space will be close to thermal, with an apparent temperature of ∼100 keV.
View Article and Find Full Text PDFIn this Letter, we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decreasing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples.
View Article and Find Full Text PDFRare kaon decays are excellent probes of light, new weakly coupled particles. If such particles X couple preferentially to muons, they can be produced in K→μνX decays. We evaluate the future sensitivity for this process at NA62 assuming X decays either invisibly or to dimuons.
View Article and Find Full Text PDF