The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.
View Article and Find Full Text PDFRetinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants.
View Article and Find Full Text PDFMyogenic fusion, primarily regulated by the Myomaker and Myomixer proteins, is essential for skeletal muscle development, yet its mechanisms remain poorly understood. This study presents the clinical and molecular details of the third and fourth reported patients with biallelic variants in MYMX, the gene that encodes Myomixer. We identified a homozygous truncating variant [c.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1.
View Article and Find Full Text PDFA newly identified subtype of hereditary axonal motor neuropathy, characterized by early proximal limb involvement, has been discovered in a cohort of 34 individuals with biallelic variants in von Willebrand factor A domain-containing 1 (). This study further delineates the disease characteristics in a cohort of 20 individuals diagnosed through genome or exome sequencing, incorporating neurophysiological, laboratory and imaging data, along with data from previously reported cases across three different studies. Newly reported clinical features include hypermobility/hyperlaxity, axial weakness, dysmorphic signs, asymmetric presentation, dystonic features and, notably, upper motor neuron signs.
View Article and Find Full Text PDFDevelopmental Delay with Gastrointestinal, Cardiovascular, Genitourinary, and Skeletal Abnormalities syndrome (DEGCAGS, MIM #619488) is caused by biallelic, loss-of-function (LoF) ZNF699 variants, and is characterized by variable neurodevelopmental disability, discordant organ anomalies among full siblings and infant mortality. ZNF699 encodes a KRAB zinc finger protein of unknown function. We aimed to investigate the genotype-phenotype spectrum of DEGCAGS and the possibility of a diagnostic DNA methylation episignature, to facilitate the diagnosis of a highly variable condition lacking pathognomonic clinical findings.
View Article and Find Full Text PDFCollagen VI-related dystrophies (COL6-RD) display a wide spectrum of disease severity and genetic variability ranging from mild Bethlem myopathy (BM) to severe Ullrich congenital muscular dystrophy (UCMD) and the intermediate severities in between with dual modes of inheritance, dominant and recessive. In the current study, next-generation sequencing demonstrated potential variants in the genes coding for the three alpha chains of collagen VI (COL6A1, COL6A2, or COL6A3) in a cohort of Egyptian patients with progressive muscle weakness (n = 23). Based on the age of disease onset and the patient clinical course, subjects were diagnosed as follows: 12 with UCMD, 8 with BM, and 3 with intermediate disease form.
View Article and Find Full Text PDFEpilepsy is a common neurological condition that arises from dysfunctional neuronal circuit control due to either acquired or innate disorders. Autophagy is an essential neuronal housekeeping mechanism, which causes severe proteotoxic stress when impaired. Autophagy impairment has been associated to epileptogenesis through a variety of molecular mechanisms.
View Article and Find Full Text PDFPurpose: Biallelic INPP4A variants have recently been associated with severe neurodevelopmental disease in single case reports. Here, we expand and elucidate the clinical-genetic spectrum and provide a pathomechanistic explanation for genotype-phenotype correlations.
Methods: Clinical and genomic investigations of 30 individuals were undertaken alongside molecular and in silico modelling and translation reinitiation studies.
Erythrocyte membrane protein band 4.1 like 3 (EPB41L3: NM_012307.5), also known as DAL1, encodes the ubiquitously expressed, neuronally enriched 4.
View Article and Find Full Text PDFPrimary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism.
View Article and Find Full Text PDFPurpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.
Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals.
Background: NOTCH3 encodes a transmembrane receptor critical for vascular smooth muscle cell function. NOTCH3 variants are the leading cause of hereditary cerebral small vessel disease (SVD). While monoallelic cysteine-involving missense variants in NOTCH3 are well-studied in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), patients with biallelic variants in NOTCH3 are extremely rare and not well characterised.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells.
View Article and Find Full Text PDFDissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify as a new gene implicated in PD and childhood neurodegeneration.
View Article and Find Full Text PDFPatatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood.
View Article and Find Full Text PDFObjectives: To present a case series of novel variants in patients presenting with genetic epileptic and developmental encephalopathy.
Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders.
Background: Variants in GABRB2, encoding the β2 subunit of the γ-aminobutyric acid type A (GABA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants.
View Article and Find Full Text PDFLoss-of-function mutations in the TLDc family of proteins cause a range of severe childhood-onset neurological disorders with common clinical features that include cerebellar neurodegeneration, ataxia and epilepsy. Of these proteins, oxidation resistance 1 (OXR1) has been implicated in multiple cellular pathways related to antioxidant function, transcriptional regulation and cellular survival; yet how this relates to the specific neuropathological features in disease remains unclear. Here, we investigate a range of loss-of-function mouse model systems and reveal that constitutive deletion of leads to a rapid and striking neuroinflammatory response prior to neurodegeneration that is associated with lysosomal pathology.
View Article and Find Full Text PDF