Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction.
View Article and Find Full Text PDFBased on the structure of the superpotent 5-HT(2A) agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation.
View Article and Find Full Text PDFActivation of the dopaminergic system underlies the behavioral effects of (+)-amphetamine, and plays a major role in its discriminative stimulus properties. Although serotonin receptors modulate dopamine levels in the brain, and 5-HT(1A) and 5-HT(2) receptor agonists do not mimic (+)-amphetamine, pretreatment with 5-HT(2A/2C) agonists significantly potentiates the (+)-amphetamine cue. Further, 5-HT(2) antagonists do not modify the discriminative stimulus effect of (+)-amphetamine, but 5-HT(1A) antagonists have never been tested in (+)-amphetamine-trained rats.
View Article and Find Full Text PDFMany people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD.
View Article and Find Full Text PDFIn-vitro studies have shown that WAY 100635 is not only a potent 5-HT1A antagonist, but also has high affinity and efficacy at the dopamine D(4) receptor. Nevertheless, the behavioral effects of this compound have not been investigated. This study sought to characterize the discriminative stimulus effects produced by WAY 100635.
View Article and Find Full Text PDFRationale: Lysergic acid diethylamide (LSD) differs from other types of hallucinogens in that it possesses direct dopaminergic effects. The exact nature of this component has not been elucidated.
Objective: The present study sought to characterize the effects of several dopamine D(4) agonists and antagonists on the discriminative stimulus effect of LSD at two pretreatment times and 2,5-dimethoxy-4-iodoamphetamine (DOI), a selective 5-HT(2A/2C) agonist.
Phenylalkylamines that possess conformationally rigidified furanyl moieties in place of alkoxy arene ring substituents have been shown previously to possess the highest affinities and agonist functional potencies at the serotonin 5-HT(2A) receptor among this chemical class. Further, affinity declines when both furanyl rings are expanded to the larger dipyranyl ring system. The present paper reports the synthesis and pharmacological evaluation of a series of 'hybrid' benzofuranyl-benzopyranyl phenylalkylamines to probe further the sizes of the binding pockets within the serotonin 5-HT(2A) agonist binding site.
View Article and Find Full Text PDFActivation of 5-HT(2A) receptors is thought to mediate the hallucinogenic effects of LSD. Nevertheless, in a previous report we provided evidence that a delayed temporal phase of the behavioral pharmacology of LSD is mediated by D(2)-like dopamine receptor stimulation. In this study rats were trained to discriminate LSD with either a 30 min preinjection time (LSD-30, N=12) or a 90 min preinjection time (LSD-90, N=13) from saline, using a two-lever, food-reinforced operant conditioning task.
View Article and Find Full Text PDFA series of conformationally restricted analogues of the hallucinogenic phenethylamine 1 (2,5-dimethoxy-4-bromophenethylamine, 2C-B) was synthesized to test several hypotheses concerning the bioactive conformation of phenethylamine ligands upon binding to the 5-HT(2A) receptor. These benzocycloalkane analogues were assayed for their receptor binding affinity and ability to activate downstream signaling pathways, and one exceptional compound was selected for testing in an in vivo drug discrimination model of hallucinogenesis. All compounds were examined in silico by virtual docking into a homology model of the 5-HT(2A) receptor.
View Article and Find Full Text PDFA conformationally restricted analogue of mescaline, C-(4,5,6-trimethoxyindan-1-yl)-methanamine, was designed using a 5-HT(2A) receptor homology model. The compound possessed 3-fold higher affinity and potency than and efficacy equal to that of mescaline at the 5-HT(2A) receptor. The new analogue substituted fully for LSD in drug discrimination studies and was 5-fold more potent than mescaline.
View Article and Find Full Text PDFRationale: The effect of LSD in humans has been described as occurring in two temporal phases. The behavioral effects in rats also occur in two temporal phases: an initial suppression of exploration followed by increased locomotor activity.
Objectives: We decided to investigate this phenomenon from the perspective that the pharmacology might have relevance to the neurochemical mechanisms underlying psychosis.
Rationale: Aripiprazole (OPC-14597) is a novel atypical antipsychotic drug with a low incidence of side effects. The therapeutic action of aripiprazole has been attributed to its unique agonist/antagonist effects at D(2) dopamine receptors; however, aripiprazole also has significant in vitro affinity at 5-HT(1A) receptors.
Objectives: The 5-HT(1A) agonist property of aripiprazole has so far not been evaluated in any in vivo assay.
In studies of the SAR of phenethylamine-type serotonin 5-HT(2A) receptor agonists, substituted conformationally constrained tetrahydronaphthofurans were designed to investigate the optimal conformation of the 2-aminoethyl moiety. These compounds were tested using in vitro assays for affinity at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. The benzofuran-containing analogues, 6a and 6b, had significantly higher affinity for the 5-HT receptors tested than did the benzodihydrofuran-containing compounds, 4a, 4b, 5a, and 5b.
View Article and Find Full Text PDFRationale: There is substantial evidence that lisuride can produce effects linked to 5-HT(1A) receptor occupancy. Nevertheless, this action has generally been ignored in the mechanism of action of lisuride, in favor of an exclusive role for dopamine receptors in considering its antiparkinsonian effects, or an exclusive role of 5-HT(2A/2C) receptor activation in hallucinogenesis. These conclusions are surprising when one considers that the potent interaction of lisuride with 5-HT(1A) receptors has been demonstrated in several different laboratories and that activation of 5-HT(1A) and 5-HT(1B) receptors can modulate dopaminergically mediated responses.
View Article and Find Full Text PDFLysergic acid amides were prepared from (R,R)-(-)-, (S,S)-(+)-, and cis-2,4-dimethyl azetidine. The dimethylazetidine moiety is considered here to be a rigid analogue of diethylamine, and thus, the target compounds are all conformationally constrained analogues of the potent hallucinogenic agent, N,N-diethyllysergamide, LSD-25. Pharmacological evaluation showed that (S,S)-(+)-2,4-dimethylazetidine gave a lysergamide with the highest LSD-like behavioral activity in the rat two lever drug discrimination model that was slightly more potent than LSD itself.
View Article and Find Full Text PDFA pair of substituted hexahydrobenzodipyrans was designed as molecular probes for determining the steric restrictions of the agonist binding site of serotonin 5-HT2A and 5-HT2C receptors. The rationale for the design of these receptor ligands, their chemical synthesis, rat behavioral pharmacology in the two-lever drug discrimination assay using LSD-trained rats, affinity for cloned rat 5-HT2A and 5-HT2C receptors and agonist functional activities are reported.
View Article and Find Full Text PDFSynthesis and biological evaluation of a novel fluorinated tryptamine analogue are described. This new compound 1-(4-fluoro-5-methoxyindol-3-yl)pyrrolidine (2) was found to be a potent serotonin 5-HT1A agonist.
View Article and Find Full Text PDFA series of fluorinated analogues of the hallucinogenic tryptamines N,N-diethyltryptamine (DET), 4-hydroxy-N,N-dimethyltryptamine (4-OH-DMT, psilocin), and 5-methoxy-DMT was synthesized to investigate possible explanations for the inactivity of 6-fluoro-DET as a hallucinogen and to determine the effects of fluorination on the molecular recognition and activation of these compounds at serotonin receptor subtypes. The target compounds were evaluated using in vivo behavioral assays for hallucinogen-like and 5-HT(1A) agonist activity and in vitro radioligand competition assays for their affinity at 5-HT(2A), 5-HT(2C), and 5-HT(1A) receptor sites. Functional activity at the 5-HT(2A) receptor was determined for all compounds.
View Article and Find Full Text PDFThe enantiomers of 3-(N-methylpyrrolidin-2-ylmethyl)-5-methoxyindole, 1, and 3-(N-methylpyrrolidin-2-ylmethyl)-4-hydoxyindole, 3, were prepared using an asymmetric synthesis that employed (+)- or (-)-proline. A new approach was developed that had certain advantages over the synthesis originally reported for the isomers of 1. (+/-)-3-(N-Methylpyrrolidin-3-yl)-4-hydroxyindole, 5, was also prepared as a rigid analogue of psilocin and compared with its 5-methoxy counterpart 4.
View Article and Find Full Text PDFThe synthesis and biological activity of 6-[2-(N, N-dimethylamino)ethyl]-4H-thieno[3,2-b]pyrrole (3a) and 4-[2-(N, N-dimethylamino)ethyl]-6H-thieno[2,3-b]pyrrole (3b), thienopyrroles as potential bioisosteres of N,N-dimethyltryptamine (1a), are reported. Hallucinogen-like activity was evaluated in the two-lever drug discrimination paradigm using LSD- and DOI-trained rats. Neither 3a nor 3b substituted for LSD or DOI up to doses of 50 micromol/kg.
View Article and Find Full Text PDFChronic exposure to mild unpredictable stress has been found to depress the consumption of, and preference for, highly palatable sucrose solution in rats. Stress-induced behavioral deficits may be maintained for a long time, however chronic administration of clinically effective antidepressants can restore normal behavior. This is the first report showing that Sprague-Dawley rats can be used in this model.
View Article and Find Full Text PDFMMAI (5-methoxy-6-methyl-2-aminoindan) is a nonneurotoxic, highly selective neuronal serotonin (5-HT) releasing agent. MMAI and other 5-HT releasing agents produce a robust discriminative cue in drug discrimination (DD) studies. The selective serotonin reuptake inhibitors (SSRIs) sertraline and citalopram may also serve as discriminative stimuli, but acquisition of their discrimination required almost twice as much time as for MMAI.
View Article and Find Full Text PDFA series of substituted racemic naphthofurans were synthesized as "hybrid" molecules of the two major prototypical hallucinogenic drug classes, the phenethylamines and the tryptamines/ergolines. Although it was hypothesized that these new agents might possess high affinity for the serotonin 5-HT2A/2C receptor subtypes, unexpected affinity for muscarinic receptors was observed. The compounds initially synthesized for this study were (+/-)-anti- and syn-4-amino-6-methoxy-2a,3,4,5-tetrahydro-2H-naphtho[1,8-bc]furan (4a,b), respectively, and their 8-bromo derivatives 4c,d, respectively.
View Article and Find Full Text PDFThe three isomeric ring-methylated derivatives of the well-known hallucinogen and entactogen MDA (1a) were synthesized and evaluated for pharmacological activity as monoamine-releasing agents and as serotonin agonists. The 2-methyl derivative 2a and the 5-methyl derivative 2b were found to be more potent and more selective than the parent compound in inhibiting [3H]-serotonin accumulation in rat brain synaptosomal preparations. Their activity in vivo was confirmed in rats trained to discriminate serotonin-releasing agents and hallucinogens from saline.
View Article and Find Full Text PDF