Publications by authors named "Marnix Lameijer"

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient ( ) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity.

View Article and Find Full Text PDF

In the version of this Article originally published, the surname of the author Edward A. Fisher was spelt incorrectly as 'Fischer'. This has now been corrected.

View Article and Find Full Text PDF

Macrophage accumulation in atherosclerosis is directly linked to the destabilization and rupture of plaque, causing acute atherothrombotic events. Circulating monocytes enter the plaque and differentiate into macrophages, where they are activated by CD4 T lymphocytes through CD40-CD40 ligand signalling. Here, we report the development and multiparametric evaluation of a nanoimmunotherapy that moderates CD40-CD40 ligand signalling in monocytes and macrophages by blocking the interaction between CD40 and tumour necrosis factor receptor-associated factor 6 (TRAF6).

View Article and Find Full Text PDF

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production.

View Article and Find Full Text PDF

Background: Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.

Objectives: This study evaluates the potential of TRAF-STOP treatment in atherosclerosis.

View Article and Find Full Text PDF

Nature is an inspirational source for biomedical engineering developments. Particularly, numerous nanotechnological approaches have been derived from biological concepts. For example, among many different biological nanosized materials, viruses have been extensively studied and utilized, while exosome research has gained much traction in the 21st century.

View Article and Find Full Text PDF

The important role of monocytes and macrophages in diseases like cancer and atherosclerosis has started to get uncovered in the last decade. In addition, subsets of these cell types are believed to participate in the initiation and aggravation of several diseases including cancer and cardiovascular disease. For this reason, monocytes and macrophages have recently been identified as interesting targets for both diagnosis and treatment of the aforementioned pathologies.

View Article and Find Full Text PDF