Publications by authors named "Marnix L Bosch"

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed.

Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma.

View Article and Find Full Text PDF

Dendritic cells (DC) initiate adaptive immune responses through the uptake and presentation of antigenic material. In preclinical studies, intratumorally injected activated DCs (aDCs; DCVax-Direct) were superior to immature DCs in rejecting tumors from mice. This single-arm, open-label phase I clinical trial evaluated the safety and efficacy of aDCs, administered intratumorally, in patients with solid tumors.

View Article and Find Full Text PDF

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article.

View Article and Find Full Text PDF

Background: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax-L) to standard therapy for newly diagnosed glioblastoma.

Methods: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99).

View Article and Find Full Text PDF

Dendritic cells (DC) are increasingly prepared in vitro for use in immunotherapy trials. Mature DC express high levels of surface molecules needed for T cell activation and are superior at antigen-presentation than immature DC. Bacillus Calmette-Guerin (BCG) is one of several products known to induce DC maturation, and interferon (IFN)-gamma has been shown to enhance the activity of DC stimulated with certain maturation factors.

View Article and Find Full Text PDF

Active immunotherapy of cancer requires the availability of a source of tumor antigens. To date, no such antigen associated with lung cancer has been identified. We have therefore investigated the ability of dendritic cells (DC) to capture whole irradiated human lung tumor cells and to present a defined surrogate antigen derived from the ingested tumor cells.

View Article and Find Full Text PDF

Although most HIV-1 infections worldwide result from heterosexual transmission, most vaccine candidates have focused on induction of systemic immunity and protection. We hypothesized that combining systemic priming with mucosal boosting would induce mucosal immunity that would protect from intravaginal challenge. Macaques were primed systemically with recombinant vaccinia viruses and boosted mucosally using inactivated SHIV(89.

View Article and Find Full Text PDF

The immunotherapy of cancer is predicated on the belief that it is possible to generate a clinically meaningful antitumor response that provides patient benefit, such as improvement in the time to progression or survival. Indeed, immunotherapeutics with dendritic cells (DC) as antigen-presenting delivery vehicles for cell-based vaccines have already improved patient outcome against a wide range of tumor types (1-9). This approach stimulates the patient's own antitumor immunity through the induction or enhancement of T-cell immunity.

View Article and Find Full Text PDF