Publications by authors named "Marnie Winter"

Immuno-specific enrichment of extracellular vesicles (EVs) can provide important information into cellular pathways underpinning various pathologies and for non-invasive diagnostics, including mass spectrometry-based analyses. Herein, we report an optimised protocol for immuno-magnetic enrichment of specific EV subtypes and their subsequent processing with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, we conjugated placental alkaline phosphatase (PLAP) antibodies to magnetic iron oxide nanowires (NWs) derived from bacterial biofilms and demonstrated the utility of this approach by enriching placenta-specific EVs (containing PLAP) from cell culture media.

View Article and Find Full Text PDF

In Brief: There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation.

Abstract: During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus.

View Article and Find Full Text PDF

Preeclampsia is a pregnancy-specific disease that can have serious effects on the health of both mothers and their offspring. Predicting which women will develop preeclampsia in early pregnancy with high accuracy will allow for improved management. The clinical symptoms of preeclampsia are well recognized, however, the precise molecular mechanisms leading to the disorder are poorly understood.

View Article and Find Full Text PDF

Technological advances in bioengineering, especially in microphysiological systems and organoids, are changing the way in which placental tissue is used and perceived. These advances raise important questions surrounding consent, privacy, biobanking, and research ethics. We explore emerging technologies which use placental tissue and the pressing associated bioethical concerns they raise.

View Article and Find Full Text PDF

Rapid diagnosis of preeclampsia is necessary to ensure timely administration of appropriate care and prevent the potentially catastrophic complications of the condition affecting both mothers and babies. While the diagnostic superiority of angiogenic blood biomarkers such as placental growth factor has recently been demonstrated, there is an urgent need to develop point-of-care (PoC) technologies that allow rapid, quantitative, and accurate testing for these markers within local communities. Towards addressing this need, here we report on a fully integrated biodiagnostic platform based on nanoscale indium oxide field effect transistor (FET) sensors.

View Article and Find Full Text PDF

Driven by a lack of appropriate human placenta models, recent years have seen the introduction of bioengineered in vitro models to better understand placental health and disease. Thus far, the focus has been on the maternal-foetal barrier. However, there are many other physiologically and pathologically significant aspects of the placenta that would benefit from state-of-the-art bioengineered models, in particular, integrating advanced culture systems with contemporary biological concepts such as organoids.

View Article and Find Full Text PDF

Microfluidics-based technologies for single-cell analysis are becoming increasingly important tools in biological studies. With the increasing sophistication of microfluidics, cellular barcoding techniques, and next-generation sequencing, a more detailed picture of cellular subtype is emerging. Unfortunately, the majority of the methods developed for single-cell analysis are high-throughput and not suitable for rare cell analysis as they require a high input cell number.

View Article and Find Full Text PDF

Potentiometric sensors based on silicon nanowire field effect transistors (SiNW FETs) typically display exquisite sensitivities, but their bioanalytical implementation is limited due to the need for stringent measurement conditions and high-precision readout units. An alternative operation principle where SiNW FETs are operated in a frequency-domain electrical impedimetric approach is promising. However, to date only limited data is available in regard to the sensing performance and translational relevance of this novel approach in comparison to the standard charge detection paradigm.

View Article and Find Full Text PDF

The detection and molecular analysis of circulating tumour cells (CTCs) potentially provides a significant insight to the characterisation of disease, stage of progression and therapeutic options for cancer patients. Following on from the protocol by Warkiani et al. 2016, which describes a method of enriching CTCs from cancer patient blood with inertial microfluidics, we describe a method to measure the CTC RNA expression in the enriched fraction using droplet digital PCR and compare transcript detection with and without RNA pre-amplification.

View Article and Find Full Text PDF

New tools for higher-resolution fetal genome analysis including microarray and next-generation sequencing have revolutionized prenatal screening. This article provides commentary on this rapidly advancing field and a future perspective emphasizing circulating fetal cell (CFC) utility. Despite the tremendous technological challenges associated with their reliable and cost-effective isolation from maternal blood, CFCs have a strong potential to bridge the gap between the diagnostic sensitivity of invasive procedures and the desirable noninvasive nature of cell-free fetal DNA (cffDNA).

View Article and Find Full Text PDF

Within an hour, as little as one disseminated tumor cell (DTC) per lymph node can be quantitatively detected using an intraoperative biosensing platform based on silicon nanowire field-effect transistors (SiNW FET). It is also demonstrated that the integrated biosensing platform is able to detect the presence of circulating tumor cells (CTCs) in the blood of colorectal cancer patients. The presence of DTCs in lymph nodes and CTCs in peripheral blood is highly significant as it is strongly associated with poor patient prognosis.

View Article and Find Full Text PDF

Circulating tumor cells (CTC) may be defined as tumor- or metastasis-derived cells that are present in the bloodstream. The CTC pool in colorectal cancer (CRC) patients may include not only epithelial tumor cells, but also tumor cells undergoing epithelial-mesenchymal transition (EMT) and tumor stem cells. A significant number of patients diagnosed with early stage CRC subsequently relapse with recurrent or metastatic disease despite undergoing "curative" resection of their primary tumor.

View Article and Find Full Text PDF

Rapid, reliable and unbiased circulating tumor cell (CTC) isolation and molecular characterization methods are urgently required for implementation in routine clinical diagnostic and prognostic procedures. We report on the development of a novel unbiased CTC detection approach that combines high-throughput automated microscopy with a simple yet efficient approach for achieving a high level of tumor cell binding in standard tissue culture polystyrene (PS) well plates. A single 5 min high-power oxygen plasma treatment was used to create homogeneous nanoscale roughness on standard PS tissue culture plates and, in turn, drastically enhance the binding of a range of tumor cells.

View Article and Find Full Text PDF

Multicellular tumour spheroids closely recapitulate the physiological environment of tumour tissues. However, their implementation in drug screening assays remains limited due to the technological challenges of forming large numbers of high quality spheroids in platforms compatible with high throughput screening. A simple bench-top microfabrication strategy is demonstrated here based on the principle of ice lithography carried out on superhydrophobic substrates to fabricate quasi-spherical microwells (spheriwells).

View Article and Find Full Text PDF

Accurate detection of lymph node metastases is critical for many solid tumours to guide treatment strategies and determine prognostic outcomes. The gold standard for detection of metastasis is by histological analysis of formalin-fixed paraffin-embedded (FFPE) sections of removed lymph nodes; this analysis method has remained largely unchanged for decades. Recent studies have highlighted limitations in the sensitivity of this approach, at least in its current clinical use, to detect very small metastatic deposits.

View Article and Find Full Text PDF