T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported.
View Article and Find Full Text PDFBackground: A key renovation of doctoral programs is currently ongoing in Italy. Public health and its competencies may play a pivotal role in high-level training to scientific research, including interdisciplinary and methodological abilities.
Methods: As a case study, we used the ongoing renovation of the Clinical and Experimental Medicine doctoral program at the University of Modena and Reggio Emilia.
Acute myeloid leukemia is a heterogeneous hematopoietic malignancy, characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells, with poor outcomes. The internal tandem duplication (ITD) mutation of the Fms-like receptor tyrosine kinase 3 (FLT3) (FLT3-ITD) represents the most common genetic alteration in AML, detected in approximately 30% of AML patients, and is associated with high leukemic burden and poor prognosis. Therefore, this kinase has been regarded as an attractive druggable target for the treatment of FLT3-ITD AML, and selective small molecule inhibitors, such as quizartinib, have been identified and trialled.
View Article and Find Full Text PDFAmong the mechanisms leading to progression to Adult T-cell Leukaemia/Lymphoma in Human T-cell Leukaemia Virus type 1 (HTLV-1)-infected subjects, the contribution of stromal components remains poorly understood. To dissect the role of fibroblasts in HTLV-1-mediated lymphomagenesis, transcriptome studies, cytofluorimetric and qRT-PCR analyses of surface and intracellular markers linked to plasticity and stemness in coculture, and in vivo experiments were performed. A transcriptomic comparison between a more lymphomagenic (C91/III) and the parental (C91/PL) cell line evidenced hyperactivation of the PI3K/Akt pathway, confirmed by phospho-ELISA and 2-DE and WB analyses.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice.
View Article and Find Full Text PDFEpigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML.
View Article and Find Full Text PDFThe US3 serine/threonine protein kinase is conserved among the alphaherpesvirus family and represents an important virulence factor. US3 plays a role in viral nuclear egress, induces dramatic alterations of the cytoskeleton, represses apoptosis, enhances gene expression and modulates the immune response. Although several substrates of US3 have been identified, an unbiased screen to identify US3 phosphorylation targets has not yet been described.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2020
Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
April 2020
The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics.
View Article and Find Full Text PDFImpairment of the axonal transport system mediated by intracellular microtubules (MTs) is known to be a major drawback in neurodegenerative processes. Due to a growing interest on the neurotoxic effects of selenium in environmental health, our study aimed to assess the relationship between selenium and MTs perturbation, that may favour disease onset over a genetic predisposition to amyotrophic lateral sclerosis. We treated a neuron-like cell line with sodium selenite, sodium selenate and seleno-methionine and observed that the whole cytoskeleton was affected.
View Article and Find Full Text PDFThe need for new approaches to investigate ex vivo the causes and effects of tumor and to achieve improved cancer treatments and medical therapies is particularly urgent for malignant pathologies such as lymphomas and leukemias, whose tissue initiator cells interact with the stroma creating a three-dimensional (3D) protective environment that conventional mono- and bi-dimensional (2D) models are not able to simulate realistically. The solvent-casting particulate leaching (SCPL) technique, that is already a standard method to produce polymer-based scaffolds for bone tissue repair, is proposed here to fabricate innovative 3D porous structures to mimic the bone marrow niche in vitro. Two different polymers, namely a rigid polymethyl methacrylate (PMMA) and a flexible polyurethane (PU), were evaluated to the purpose, whereas NaCl, in the form of common salt table, resulted to be an efficient porogen.
View Article and Find Full Text PDFClusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity.
View Article and Find Full Text PDFMesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age.
View Article and Find Full Text PDFA main cause of treatment failure for AML patients is resistance to chemotherapy. Survival of AML cells may depend on mechanisms that elude conventional drugs action and/or on the presence of leukemia initiating cells at diagnosis, and their persistence after therapy. MDR1 gene is an ATP-dependent drug efflux pump known to be a risk factor for the emergence of resistance, when combined to unstable cytogenetic profile of AML patients.
View Article and Find Full Text PDFSmall heat shock proteins (HSPBs) contain intrinsically disordered regions (IDRs), but the functions of these IDRs are still unknown. Here, we report that, in mammalian cells, HSPB2 phase separates to form nuclear compartments with liquid-like properties. We show that phase separation requires the disordered C-terminal domain of HSPB2.
View Article and Find Full Text PDFCK2 and AKT display a high degree of cross-regulation of their respective functions, both directly, through physical interaction and phosphorylation, and indirectly, through an intense cross-talk of key downstream effectors, ultimately leading to sustained AKT activation. Being CK2 and AKT attractive targets for therapeutic intervention, here we would like to emphasize how AKT and CK2 might influence cell fate through their complex isoform-specific and contextual-dependent cross-talk, to the extent that such functional interplay should be considered when devising therapies that target one or both these key signaling kinases.
View Article and Find Full Text PDFGlycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival.
View Article and Find Full Text PDFThe roles of the epidermal growth factor receptor (EGFR) signaling pathway in various cancers including breast, bladder, brain, colorectal, esophageal, gastric, head and neck, hepatocellular, lung, neuroblastoma, ovarian, pancreatic, prostate, renal and other cancers have been keenly investigated since the 1980's. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about this pathway and how its deregulation can lead to cancer and how it may be differentially regulated in various cell types. Multiple inhibitors to EGFR family members have been developed and many are in clinical use.
View Article and Find Full Text PDFPEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition.
View Article and Find Full Text PDF