The process of inference on networks of spiking neurons is essential to decipher the underlying mechanisms of brain computation and function. In this study, we conduct inference on parameters and dynamics of a mean-field approximation, simplifying the interactions of neurons. Estimating parameters of this class of generative model allows one to predict the system's dynamics and responses under changing inputs and, indeed, changing parameters.
View Article and Find Full Text PDFWhole-brain modeling of epilepsy combines personalized anatomical data with dynamical models of abnormal activities to generate spatio-temporal seizure patterns as observed in brain imaging data. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable.
View Article and Find Full Text PDFWhole brain network models are now an established tool in scientific and clinical research, however their use in a larger workflow still adds significant informatics complexity. We propose a tool, RateML, that enables users to generate such models from a succinct declarative description, in which the mathematics of the model are described without specifying how their simulation should be implemented. RateML builds on NeuroML's Low Entropy Model Specification (LEMS), an XML based language for specifying models of dynamical systems, allowing descriptions of neural mass and discretized neural field models, as implemented by the Virtual Brain (TVB) simulator: the end user describes their model's mathematics once and generates and runs code for different languages, targeting both CPUs for fast single simulations and GPUs for parallel ensemble simulations.
View Article and Find Full Text PDFDuring the current COVID-19 pandemic, governments must make decisions based on a variety of information including estimations of infection spread, health care capacity, economic and psychosocial considerations. The disparate validity of current short-term forecasts of these factors is a major challenge to governments. By causally linking an established epidemiological spread model with dynamically evolving psychosocial variables, using Bayesian inference we estimate the strength and direction of these interactions for German and Danish data of disease spread, human mobility, and psychosocial factors based on the serial cross-sectional COVID-19 Snapshot Monitoring (COSMO; N = 16,981).
View Article and Find Full Text PDFPrecise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging.
View Article and Find Full Text PDFObjective: The virtual epileptic patient (VEP) is a large-scale brain modeling method based on virtual brain technology, using stereoelectroencephalography (SEEG), anatomical data (magnetic resonance imaging [MRI] and connectivity), and a computational neuronal model to provide computer simulations of a patient's seizures. VEP has potential interest in the presurgical evaluation of drug-resistant epilepsy by identifying regions most likely to generate seizures. We aimed to assess the performance of the VEP approach in estimating the epileptogenic zone and in predicting surgical outcome.
View Article and Find Full Text PDFThe Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material.
View Article and Find Full Text PDFFocal drug resistant epilepsy is a neurological disorder characterized by seizures caused by abnormal activity originating in one or more regions together called as epileptogenic zone. Treatment for such patients involves surgical resection of affected regions. Epileptogenic zone is typically identified using stereotactic EEG recordings from the electrodes implanted into the patient's brain.
View Article and Find Full Text PDFIndividualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties.
View Article and Find Full Text PDFSurgical interventions in epileptic patients aimed at the removal of the epileptogenic zone have success rates at only 60-70%. This failure can be partly attributed to the insufficient spatial sampling by the implanted intracranial electrodes during the clinical evaluation, leading to an incomplete picture of spatio-temporal seizure organization in the regions that are not directly observed. Utilizing the partial observations of the seizure spreading through the brain network, complemented by the assumption that the epileptic seizures spread along the structural connections, we infer if and when are the unobserved regions recruited in the seizure.
View Article and Find Full Text PDFBackground: Several automated parcellation atlases of the human brain have been developed over the past decades, based on various criteria, and have been applied in basic and clinical research.
New Method: Here we present the Virtual Epileptic Patient (VEP) atlas that offers a new automated brain region parcellation and labeling, which has been developed for the specific use in the domains of epileptology and functional neurosurgery and is able to apply at individual patient's level.
Results: It comprises 162 brain regions, including 73 cortical and 8 subcortical regions per hemisphere.
Advances in experimental techniques and computational power allowing researchers to gather anatomical and electrophysiological data at unprecedented levels of detail have fostered the development of increasingly complex models in computational neuroscience. Large-scale, biophysically detailed cell models pose a particular set of computational challenges, and this has led to the development of a number of domain-specific simulators. At the other level of detail, the ever growing variety of point neuron models increases the implementation barrier even for those based on the relatively simple integrate-and-fire neuron model.
View Article and Find Full Text PDFMany analysis methods exist to extract graphs of functional connectivity from neuronal networks. Confidence in the results is limited because, (i) different methods give different results, (ii) parameter setting directly influences the final result, and (iii) systematic evaluation of the results is not always performed. Here, we introduce MULAN (MULtiple method ANalysis), which assumes an ensemble based approach combining multiple analysis methods and fuzzy logic to extract graphs with the most probable structure.
View Article and Find Full Text PDFConnectome-based modeling of large-scale brain network dynamics enables causal interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease.
View Article and Find Full Text PDFThe brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation.
View Article and Find Full Text PDFObjective: In focal epilepsies, the accurate delineation of the epileptogenic network is a fundamental step before surgery. For years, the relationship between the interictal epileptic spikes (defining the "irritative zone", IZ) and the sites of seizure initiation (SOZ) has been a matter of debate.
Methods: Our goal was to investigate from intracerebral recordings (stereoelectroencephalography, SEEG) the distribution of interictal epileptic spikes (based on a spike frequency index, SI) and the topography of the SOZ (based on the Epileptogenicity Index, EI) in patients having focal neocortical epilepsies.
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5.
View Article and Find Full Text PDFWe present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python.
View Article and Find Full Text PDFLow-dimensional attractive manifolds with flows prescribing the evolution of state variables are commonly used to capture the lawful behavior of behavioral and cognitive variables. Neural network dynamics underlie many of the mechanistic explanations of function and demonstrate the existence of such low-dimensional attractive manifolds. In this study, we focus on exploring the network mechanisms due to asymmetric couplings giving rise to the emergence of arbitrary flows in low dimensional spaces.
View Article and Find Full Text PDFIn the past few decades, behavioral and cognitive science have demonstrated that many human behaviors can be captured by low-dimensional observations and models, even though the neuromuscular systems possess orders of magnitude more potential degrees of freedom than are found in a specific behavior. We suggest that this difference, due to a separation in the time scales of the dynamics guiding neural processes and the overall behavioral expression, is a key point in understanding the implementation of cognitive processes in general. In this paper we use Structured Flows on Manifolds (SFM) to understand the organization of behavioral dynamics possessing this property.
View Article and Find Full Text PDF