In this study, mechanical mixtures of sugarcane bagasse and iron salts (nitrate, acetate, or a mixture of both) were subjected to thermal decomposition for producing iron oxide and carbonaceous composite materials, which were evaluated as adsorbents for removing dyes from water using methylene blue (MB) as a model system. Aiming to optimize the conditions for obtaining composite adsorbents, the Box-Behnken design (BBD) was used to study the effects of mass sugarcane bagasse/mass iron salt, type of mixture of sugarcane bagasse/iron salt, and temperature on the response to be obtained (adsorption capacity, ) before the execution of the adsorption tests. The synthesized composites were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis.
View Article and Find Full Text PDFScientificWorldJournal
October 2014
The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds.
View Article and Find Full Text PDF