Superimposed on long-term late Paleocene-early Eocene warming (~59 to 52 million years ago), Earth's climate experienced a series of abrupt perturbations, characterized by massive carbon input into the ocean-atmosphere system and global warming. Here, we examine the three most punctuated events of this period, the Paleocene-Eocene Thermal Maximum and Eocene Thermal Maximum 2 and 3, to probe whether they were initiated by climate-driven carbon cycle tipping points. Specifically, we analyze the dynamics of climate and carbon cycle indicators acquired from marine sediments to detect changes in Earth system resilience and to identify positive feedbacks.
View Article and Find Full Text PDFQuantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δO) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ) and oxygen isotope (δO) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval.
View Article and Find Full Text PDFPaleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic.
View Article and Find Full Text PDFThe Middle Eocene Climatic Optimum (MECO) represents a ~500-kyr period of global warming ~40 million years ago and is associated with a rise in atmospheric CO concentrations, but the cause of this CO rise remains enigmatic. Here we show, based on osmium isotope ratios (Os/Os) of marine sediments and published records of the carbonate compensation depth (CCD), that the continental silicate weathering response to the inferred CO rise and warming was strongly diminished during the MECO-in contrast to expectations from the silicate weathering thermostat hypothesis. We surmise that global early and middle Eocene warmth gradually diminished the weatherability of continental rocks and hence the strength of the silicate weathering feedback, allowing for the prolonged accumulation of volcanic CO in the oceans and atmosphere during the MECO.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2016
The Paleocene-Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of C-depleted carbon into the ocean-atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO from hydrothermal vent complexes.
View Article and Find Full Text PDF