Publications by authors named "Marlon V Duro"

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.

View Article and Find Full Text PDF

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC.

View Article and Find Full Text PDF

Background: Chronic neuroinflammation is one of the hallmarks of late-onset Alzheimer's disease (AD) dementia pathogenesis. Carrying the apolipoprotein ε4 (APOE4) allele has been associated with an accentuated response to brain inflammation and increases the risk of AD dementia progression. Among inflammation signaling pathways, aberrant eicosanoid activation plays a prominent role in neurodegeneration.

View Article and Find Full Text PDF

Purpose Of Review: To highlight recent developments in studying mechanisms by which the apolipoprotein E4 (APOE4) allele affects the metabolism of brain lipids and predisposes the brain to inflammation and Alzheimer's disease (AD) dementia.

Recent Findings: APOE4 activates Ca2+ dependent phospholipase A2 (cPLA2) leading to changes in arachidonic acid (AA), eicosapentaenoic acid and docosahexaenoic acid signaling cascades in the brain. Among these changes, the increased conversion of AA to eicosanoids associates with sustained and unresolved chronic brain inflammation.

View Article and Find Full Text PDF

Sensorineural hearing loss is irreversible and is associated with the loss of spiral ganglion neurons (SGNs) and sensory hair cells within the inner ear. Improving spiral ganglion neuron (SGN) survival, neurite outgrowth, and synaptogenesis could lead to significant gains for hearing-impaired patients. There has therefore been intense interest in the use of neurotrophic factors in the inner ear to promote both survival of SGNs and re-wiring of sensory hair cells by surviving SGNs.

View Article and Find Full Text PDF