Publications by authors named "Marlon Quinones"

Objectives: To sequentially study the effectiveness of lithium and divalproex monotherapy and adjunctive therapy with quetiapine or lamotrigine in the acute and continuation treatment of bipolar I or II disorder at any phase of illness and at least mild symptom severity.

Methods: From June 2011 to December 2016, patients with bipolar I or II disorder (using DSM-IV diagnostic criteria) and CGI-S (Clinical Global Impression-Severity) ⩾ 3 were randomized to receive lithium or divalproex monotherapy for 2 weeks. Patients who had CGI-S-depression ⩾ 3 for 2 weeks at any time after 2-week monotherapy were randomly assigned to receive quetiapine or lamotrigine, or remaining on monotherapy for a total of 26 weeks.

View Article and Find Full Text PDF

Social cognition is impaired in schizophrenia, is relatively independent of purely neurocognitive domains such as attention and executive functioning, and may be the strongest predictor of functional outcome in this disease. Within a motivated reasoning framework, we tested the hypothesis that the anti-inflammatory Th2-associated cytokines, IL-10 and MDC, would be correlated with behavioral measures of social cognitive threat-detection bias (self-referential gaze detection bias and theory of mind (ToM) bias) in delusional versus non-delusional patients. We administered to schizophrenia patients with delusions (n=21), non-delusional patients (n=39) and controls (n=20) a social cognitive task designed to be sensitive to psychosocial stress response (the Waiting Room Task) and collected plasma levels of inflammatory markers using a bead-based flow immunoassay.

View Article and Find Full Text PDF

Background: A Spanish language rating scale which assesses the range of bipolar disorder symptoms is needed. There are rating scales commonly used, however they do not address commonly expressed symptoms associated with bipolar disorder and have varied rating systems. There are also few comparisons of symptom severity between Spanish and English speaking patients, due to limitations in available rating scales.

View Article and Find Full Text PDF

Second-generation antipsychotics (SGAs) are commonly used to treat schizophrenia. However, SGAs cause metabolic disturbances that can manifest as metabolic syndrome (MetS) in a subset of patients. The causes for these metabolic disturbances remain unclear.

View Article and Find Full Text PDF

Background: Chemokines and their receptors play a role in the innate immune response as well as in the disruption of the balance between pro-inflammatory Th17 cells and regulatory T cells (Treg), underlying the pathogenesis of coronary vasculitis in Kawasaki disease (KD).

Results: Here we show that genetic inactivation of chemokine receptor (CCR)-2 is protective against the induction of aortic and coronary vasculitis following injection of Candida albicans water-soluble cell wall extracts (CAWS). Mechanistically, both T and B cells were required for the induction of vasculitis, a role that was directly modulated by CCR2.

View Article and Find Full Text PDF

Objective: Dendritic cells (DCs) have long been recognized as potential therapeutic targets of rheumatoid arthritis (RA). Increasing evidence has showed that DCs are capable of suppressing autoimmunity by expanding FoxP3⁺ regulatory T cells (T(reg)), which in turn exert immunosuppression by increasing TGFβ-1. In the SKG mice, activated DC prime autoreactive T cells causing autoantibody production and an inflammatory arthritic response.

View Article and Find Full Text PDF

Neuregulin 1 (NRG1) has been implicated in several disorders including breast cancer, multiple sclerosis, and schizophrenia. Also, recent evidence suggests that NRG1 may play a role in regulation of inflammation and immune system response. We therefore hypothesized that a schizophrenia-associated missense mutation (valine to leucine) we identified within the transmembrane region of NRG1 would also be linked to immune dysregulation.

View Article and Find Full Text PDF

We postulated that CCR2-driven activation of the transcription factor NF-kappaB plays a critical role in dendritic cell (DC) maturation (e.g., migration, costimulation, and IL-12p70 production), necessary for the generation of protective immune responses against the intracellular pathogen Leishmania major.

View Article and Find Full Text PDF

The repertoire of biochemicals (or small molecules) present in cells, tissue, and body fluids is known as the metabolome. Today, clinicians utilize only a very small part of the information contained in the metabolome, as revealed by the quantification of a limited set of analytes to gain information on human health. Examples include measuring glucose or cholesterol to monitor diabetes and cardiovascular health, respectively.

View Article and Find Full Text PDF

Ligands of CCR5, the major coreceptor of HIV-1, costimulate T lymphocyte activation. However, the full impact of CCR5 expression on T cell responses remains unknown. Here, we show that compared with CCR5(+/+), T cells from CCR5(-/-) mice secrete lower amounts of IL-2, and a similar phenotype is observed in humans who lack CCR5 expression (CCR5-Delta32/Delta32 homozygotes) as well as after Ab-mediated blockade of CCR5 in human T cells genetically intact for CCR5 expression.

View Article and Find Full Text PDF

The World Congress of Psychiatric Genetics (WCPG) has become an annual event since the early 1990's sponsored by the International Society of Psychiatric Genetics (ISPG). Each year the latest published and unpublished findings are aired for discussion by representatives of the majority of research programs on this topic world-wide. The 2007 congress was held in New York City and attracted over 1000 researchers.

View Article and Find Full Text PDF

Chemotactic factors known as chemokines play an important role in the pathogenesis of multiple sclerosis (MS). Transgenic expression of TNFalpha in the central nervous system (CNS) leads to the development of a demyelinating phenotype (TNFalpha-induced demyelination; TID) that is highly reminiscent of MS. Little is known about the role of chemokines in TID but insights derived from studying this model might extend our current understanding of MS pathogenesis and complement data derived from the classic autoimmune encephalomyelitis (EAE) model system.

View Article and Find Full Text PDF

Members of the chemokine system, play a central role in inflammatory processes that underlie the pathogenesis of atherosclerosis and possibly, aortic valve sclerosis. Here we show that genetic inactivation of CC chemokine receptor 5 (CCR5) in the atherosclerosis-prone Apoe-/- mice (Apoe-/- Ccr5-/-) fed a normal chow or a high-fat diet (HFD) are protected against advanced atherosclerosis as well as age-associated aortic valve thickening (AAAVT)--a murine correlate of aortic valve sclerosis. Notably, human sclerotic valves contained CCR5+ cells.

View Article and Find Full Text PDF

Macrophages have the potential to deliver therapeutic genes to many target tissues. Macrophage-specific synthetic promoters (SPs) generated by random ligation of myeloid/macrophage cis elements had activity up to 100-fold that of a native macrophage promoter in macrophage cell lines, but were minimally active in nonmyeloid cells. Mouse bone marrow cells (BMCs) transduced ex vivo with lentivectors expressing green fluorescent protein (GFP) driven either by an SP (SP-GFP) or a cytomegalovirus (CMV) promoter (CMV-GFP) were used for syngeneic transplantation of lethally irradiated mice.

View Article and Find Full Text PDF

The host factors that influence autoimmune arthritides such as rheumatoid arthritis have not been fully elucidated. We previously found that genetic inactivation of CC chemokine receptor 2 (CCR2) in the arthritis-prone DBA/1j mouse strain significantly increases the susceptibility of this strain to autoimmune arthritis induced by immunization with collagen type II (CII) and complete Freund's adjuvant (CFA). Here, we show that following intradermal infection with Mycobacterium avium, a similar arthritis phenotype was detected in Ccr2-null mice in the DBA/1j, but not in the BALB/c background.

View Article and Find Full Text PDF

Background: Numerous mouse models have been used to study the tissue response to ischemia, but multiple technical differences make comparisons difficult. We have comprehensively characterized the mouse hind limb ischemia model and determined how different genetic backgrounds of mice affect recovery.

Materials And Methods: Severity of tissue necrosis and restoration of perfusion after femoral artery excision or femoral artery transection, using five different surgical procedures, were evaluated using laser Doppler imaging in a mouse model of hind limb ischemia.

View Article and Find Full Text PDF

CCR2 has been widely considered as a potential therapeutic target for autoimmune disease, particularly rheumatoid arthritis, and various CCR2 blocking agents have been developed, some of which have entered clinical trials. In this review, we examine the relevant information regarding the role of CCR2, and to a lesser extent of the closely related chemokine receptor CCR5, in the immunopathogenesis of collagen-induced arthritis, an animal model of rheumatoid arthritis. Experimental evidence showing that CIA is accelerated and exacerbated when CCR2 is genetically inactivated (knockout mice) or blocked with specific antibodies warrant additional investigations before the relevance of the findings in rodent models can be applied to human patients with RA.

View Article and Find Full Text PDF

Segmental duplications in the human genome are selectively enriched for genes involved in immunity, although the phenotypic consequences for host defense are unknown. We show that there are significant interindividual and interpopulation differences in the copy number of a segmental duplication encompassing the gene encoding CCL3L1 (MIP-1alphaP), a potent human immunodeficiency virus-1 (HIV-1)-suppressive chemokine and ligand for the HIV coreceptor CCR5. Possession of a CCL3L1 copy number lower than the population average is associated with markedly enhanced HIV/acquired immunodeficiency syndrome (AIDS) susceptibility.

View Article and Find Full Text PDF

The prevailing paradigm is that in human rheumatoid arthritis (RA), the accumulation of monocytes and T cells in the joint, mediated in part by such CC chemokine receptors (CCRs) as CCR2 and CCR5, respectively, plays a central role in disease pathogenesis. To further validate this paradigm, we conducted proof-of-principle studies and tested the hypothesis that gene inactivation of Ccr2 or Ccr5 will ameliorate experimental RA. Contrary to our expectations, we found that in two well-established murine models of experimental RA, CCR2 expression in the hematopoietic cell compartment served as a negative regulator of autoantibody production as well as arthritic disease onset, severity, and resolution.

View Article and Find Full Text PDF

The complete repertoire of cellular and molecular determinants that influence graft-vs-host disease (GVHD) is not known. Using a well-established murine model of GVHD (B6-->bm12 mice), we sought to elucidate the role of the donor non-T cell compartment and molecular determinants therein in the pathogenesis of GVHD. In this model the acute GVHD-inducing effects of purified B6 wild-type (wt) CD4(+) T cells was inhibited by wt non-T cells in a dose-dependent manner.

View Article and Find Full Text PDF

The accumulation of macrophages and T lymphocytes in vessel walls is a hallmark of atherogenesis. It has recently been demonstrated in mouse models of atherosclerosis that full disease potential is dependent on several regulators of leukocyte trafficking, including the chemokine monocyte chemotactic protein 1 (MCP-1) and the chemokine receptors CCR2 and CXCR2. A possible role for the chemokine receptor CCR5 in atherogenesis has been suggested by CCR5 expression on macrophages, T cells, coronary endothelial cells and aortic smooth muscle cells and by the presence of CCR5 ligands in atherosclerotic plaques.

View Article and Find Full Text PDF

Acute and chronic inflammation cause many changes in total body iron metabolism including the sequestration of iron in phagocytic cells of the reticuloendothelial system. This change in iron metabolism contributes to the development of the anemia of inflammation. MTP1, the duodenal enterocyte basolateral iron exporter, is also expressed in the cells of the reticuloendothelial system (RES) and is likely to be involved in iron recycling of these cells.

View Article and Find Full Text PDF