Publications by authors named "Marlon N Manalo"

L. (Guyabano) leaves are reported to exhibit anticancer activity against cancer cells. In this study, the ethyl acetate extract from guyabano leaves was purified through column chromatography, and the cytotoxic effects of the semi-purified fractions were evaluated against A549 lung cancer cells using in vitro MTS cytotoxicity and scratch/wound healing assays.

View Article and Find Full Text PDF

Asian corn borer (ACB) is a destructive insect pest of corn and causes up to 80% yield reduction in the Philippines. Synthetic insecticides have been used to control ACB but they pose a risk to human health and the environment. The use of synergists increases insecticide effectiveness and decreases the frequency of insecticide application.

View Article and Find Full Text PDF

Malonic anhydrides decompose at or below room temperature, to form a ketene and carbon dioxide. Rate constants for the thermal decomposition of malonic, methylmalonic, and dimethylmalonic anhydrides were measured by NMR spectroscopy at various temperatures, and activation parameters were evaluated from the temperature dependence of the rate constants. Methylmalonic anhydride is the fastest, with the lowest ΔH(‡), and dimethylmalonic anhydride is the slowest.

View Article and Find Full Text PDF

Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the (15)N chemical shift of backbone amides of proteins, (1)Delta(15)N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for (1)Delta(15)N(D) including the backbone dihedral angles, Phi and Psi, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N-H bond length.

View Article and Find Full Text PDF

Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested.

View Article and Find Full Text PDF

Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, (2h)Delta13C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that (2h)Delta13C2 is sensitive to hydrogen-bond strength. Calculated (2h)Delta13C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical (2h)Delta13C2 values.

View Article and Find Full Text PDF

Here, we show that 1JNH values are on average 0.4 Hz less negative for double-stranded RNA A:U than for DNA A:T base pairs, which, according to existing theory, suggests that RNA N1..

View Article and Find Full Text PDF