Publications by authors named "Marlon Henrique Cardoso"

Article Synopsis
  • Peptides are being explored as alternative treatments for various infections, but their effectiveness is limited by issues like instability and toxicity to healthy cells.
  • New administration methods, particularly using nanoparticles as carriers, show promise for improving peptide delivery, though current design efforts are time-consuming and often based on trial and error.
  • Recent advancements in computational approaches aim to speed up the creation of efficient drug delivery systems for peptides, increasing the potential for optimized drug development.
View Article and Find Full Text PDF

Bacterial resistance has become a serious public health problem in recent years, thus encouraging the search for new antimicrobial agents. Here, we report an antimicrobial peptide (AMP), called PEPAD, which was designed based on an encrypted peptide from a Kunitz-type plant peptidase inhibitor. PEPAD was capable of rapidly inhibiting and eliminating numerous bacterial species at micromolar concentrations (from 4μM to 10 μM), with direct membrane activity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMP) represent an alternative in the treatment of fungal infections associated with countless deaths. Here, we report a new AMP, named KWI-19, which was designed based on a peptide encrypted in the sequence of an Inga laurina Kunitz-type inhibitor (ILTI). KWI-19 inhibited the growth of Candida species and acted as a fungicidal agent from 2.

View Article and Find Full Text PDF

The spread of fungi resistant to conventional drugs has become a threatening problem. In this context, antimicrobial peptides (AMPs) have been considered as one of the main alternatives for controlling fungal infections. Here, we report the antifungal and antibiofilm activity and some clues about peptide RQ18's mechanism of action against Candida and Cryptococcus.

View Article and Find Full Text PDF
Article Synopsis
  • Chagas disease, sleeping sickness, and malaria are serious infections caused by protozoan parasites that affect millions globally.
  • In an experiment, synthetic polyalanine peptides were tested for their effectiveness against these parasites, showing that two specific peptides inhibited growth significantly.
  • Structural analysis revealed that one peptide interacts more deeply with cell membranes, suggesting different mechanisms of action, which supports the idea of using these peptides as potential treatments for sleeping sickness.
View Article and Find Full Text PDF

Several antimicrobial peptides (AMPs) have been reported in amphibian toxins, as temporin-PTa from Hylarana picturata. The amino acid distribution within a helical structure of AMPs favors the design of new bioactive peptides. Therefore, this work reports the rational design of two new synthetic peptides denominated Hp-MAP1 and Hp-MAP2 derived from temporin-PTa.

View Article and Find Full Text PDF

Antimicrobial peptides (AMP) are present in all organisms and can present several activities and potential applications in human and animal health. Screening these molecules scaffolds represents a key point for discovering and developing novel biotechnological products, including antimicrobial, antiviral and anticancer drugs candidates and insecticidal molecules with potential applications in agriculture. Therefore, considering the amount of biological data currently deposited on public databases, computational approaches have been commonly used to predicted and identify novel cysteine-rich peptides scaffolds with known or unknown biological properties.

View Article and Find Full Text PDF

Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2.

View Article and Find Full Text PDF

Klebsiella pneumoniae causes common and severe hospital- and community-acquired infections with a high incidence of multidrug resistance (MDR) and mortality. In this study, we investigated the ability of the antisense peptide nucleic acids (PNA) conjugated to the (KFF)3K cell-penetrating peptide (CPP) to target the gyrA KPC-producing K. pneumoniae and inhibit bacterial growth in vitro.

View Article and Find Full Text PDF

has been reported in the past few years as an invasive fungal pathogen of high interest. Its recent emergence in healthcare-associated infections triggered the efforts of researchers worldwide, seeking additional alternatives to the use of traditional antifungals such as azoles. Lipopeptides, specially the echinocandins, have been reported as an effective approach to control pathogenic fungi.

View Article and Find Full Text PDF

The need for new antimicrobial therapies is evident, especially to reduce antimicrobial resistance and minimize deleterious effects on gut microbiota. However, although diverse studies discuss the adverse effects of broad-spectrum antibiotics on the microbiome ecology, targeted interventions that could solve this problem have often been overlooked. The impact of antibiotics on gut microbiota homeostasis is alarming, compromising its microbial community and leading to changes in host health.

View Article and Find Full Text PDF

yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against species.

View Article and Find Full Text PDF

Talisin is a storage protein from seeds that presents lectin-like and peptidase inhibitor properties. These characteristics suggest that talisin plays a role in the plant defense process, making it a multifunctional protein. This work aimed to investigate the effects of chronic intake of talisin on fifth instar larvae of , considered the main insect pest of maize and the cause of substantial economic losses in several other crops.

View Article and Find Full Text PDF

The Indianmeal moth, , is one of the most damaging pests of stored products. We investigated the insecticidal properties of ApKTI, a Kunitz trypsin inhibitor from seeds, against larvae through bioassays with artificial diet. ApKTI-fed larvae showed reduction of up to 88% on larval weight and 75% in survival.

View Article and Find Full Text PDF

Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms.

View Article and Find Full Text PDF

Bacterial resistance has been listed as one of the main threats to human health, leading to high mortality rates. Among the mechanisms involved in bacterial resistance proliferation and selection, we can cite cross-resistance, which occurs when resistance events to one anti-infective agent trigger resistance to other agents. Thus, considering the importance of cross-resistance evolution worldwide in the context of resistant bacterial infections, this minireview focused on the description of bacterial adaptation, including biofilm formation.

View Article and Find Full Text PDF

Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance.

View Article and Find Full Text PDF

NDM-1 comprises a carbapenemase that was first detected in 2008 in New Delhi, India. Since then, NDM-1-producing Klebsiella pneumoniae strains have been reported in many countries and usually associated with intra and inter-hospital dissemination, along with travel-related epidemiological links. In South America, Brazil represents the largest reservoir of NMD-1-producing K.

View Article and Find Full Text PDF

This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Crop protection is vital for food security, focusing on enhancing plants' natural defenses against insect damage, which causes significant global losses.
  • Plants have evolved various mechanisms, like chemical barriers, to deter herbivores; some links to traditional farming practices exist, while others hold potential for future use.
  • This review explores historical phytochemicals and promising proteins, discussing their structures and actions to aid in biological pest control through product formulation and creation of resilient plant varieties.
View Article and Find Full Text PDF

The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities.

View Article and Find Full Text PDF

The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm screens with different compounds may reveal potential therapies to prevent/treat biofilm infections.

View Article and Find Full Text PDF

Stingrays commonly cause human envenoming related accidents in populations of the sea, near rivers and lakes. Transcriptomic profiles have been used to elucidate components of animal venom, since they are capable of providing molecular information on the biology of the animal and could have biomedical applications. In this study, we elucidated the transcriptomic profile of the venom glands from two different freshwater stingray species that are endemic to the Paraná-Paraguay basin in Brazil, Potamotrygon amandae and Potamotrygon falkneri.

View Article and Find Full Text PDF

Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the dengue/yellow fever virus transmitted by Aedes aegypti and investigates the effects of the natural proteinase inhibitor, ApTI, on its larvae.
  • ApTI significantly decreased the survival, weight, and digestive enzyme activity in Ae. aegypti larvae, indicating its potential as a control agent against this mosquito species.
  • Additional analyses revealed that ApTI not only caused physical changes in larval gut cells but also that larvae could not adapt to the presence of ApTI, posing challenges for their development.
View Article and Find Full Text PDF