Publications by authors named "Marlon D Cowart"

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders.

View Article and Find Full Text PDF

Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.

View Article and Find Full Text PDF

There is growing evidence supporting a role for histamine H(3) receptors in the modulation of pathological pain. To further our understanding of this modulation, we examined the effects of a selective H(3) receptor antagonist, 6-((3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide (GSK189254), on spinal neuronal activity in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of GSK189254 (0.

View Article and Find Full Text PDF

A series of compounds was designed as dual inhibitors of the H(3) receptor and the norepinephrine transporter. Compound 5 (rNET K(i) = 14 nM; rH(3)R K(i) = 37 nM) was found to be efficacious in a rat model of osteoarthritic pain.

View Article and Find Full Text PDF

H(3) antagonists increase the release of brain histamine, acetylcholine, noradrenaline, and dopamine, neurotransmitters that are known to modulate cognitive processes. The ability to release brain histamine supports the effect on attention and vigilance, but histamine also modulates other cognitive domains such as short-term and long-term memory. A number of H(3) antagonists, including 1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine hydrochloride (BF2.

View Article and Find Full Text PDF

The histamine H(3) receptor is predominantly expressed in the central nervous system and plays a role in diverse physiological mechanisms. In the present study, the effects of GSK189254, a potent and selective H(3) antagonist, were characterized in preclinical pain models in rats. Systemic GSK189254 produced dose-dependent efficacy (ED(50)=0.

View Article and Find Full Text PDF

A series of quinoline containing histamine H(3) antagonists is reported herein. These analogs were synthesized via the Friedlander quinoline synthesis between an aminoaldehyde intermediate and a methyl ketone allowing for a wide diversity of substituents at the 2-position of the quinoline ring.

View Article and Find Full Text PDF

The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.

View Article and Find Full Text PDF

A new histamine H3 receptor (H3R) antagonist chemotype 1 was designed by combining key pharmacophoric elements from two different precursor structural series and then simplifying and optimizing the resulting combined structural features. First, analogues were made based on a previously identified conessine-based H3R antagonist series. While the first analogues 11 and 15 showed no antagonistic activity to H3R, the mere addition of a key moiety found in the reference compound 7 (ABT-239) elevated the series to high potency at H3R.

View Article and Find Full Text PDF

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.

View Article and Find Full Text PDF

A new structural class of histamine H 4 receptor antagonists (6-14) was designed based on rotationally restricted 2,4-diaminopyrimidines. Series compounds showed potent and selective in vitro H 4 antagonism across multiple species, good CNS penetration, improved PK properties compared to reference H 4 antagonists, functional H 4 antagonism in cellular and in vivo pharmacological assays, and in vivo anti-inflammatory and antinociceptive efficacy. One compound, 10 (A-943931), combined the best features of the series in a single molecule and is an excellent tool compound to probe H 4 pharmacology.

View Article and Find Full Text PDF

A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring.

View Article and Find Full Text PDF

The naturally occurring alkaloid, conessine (6), was discovered to bind to histamine H3 receptors in a radioligand-based high-throughput screen. Conessine displayed high affinity at both rat and human H3 receptors (pKi = 7.61 and 8.

View Article and Find Full Text PDF

Guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assays were established and utilized as a reliable and high-capacity functional assay for determining antagonist and inverse agonist pharmacological parameters of novel histamine H(3) ligands, at the recombinant human H(3) receptor. [(35)S]GTPgammaS binding assays were performed with membranes prepared from human embryonic kidney 293 cells stably expressing the full-length (445 amino acids) human H(3) receptor isoform, at approximately 1 pmol/mg of protein. Utilizing robotic liquid handling, assay filtration, and scintillation counting in a 96-well format, concentration-response curves were determined for up to 40 compounds per assay.

View Article and Find Full Text PDF

Structure-activity relationships (SAR) were analyzed within a library of diverse yet simple compounds prepared as histamine H3 antagonists. The libraries were constructed with a variety of low molecular weight pyrrolidines, selected from (R)-2-methylpyrrolidine, (S)-2-methylpyrrolidine, and pyrrolidine.

View Article and Find Full Text PDF

A new structural series of histamine H3 receptor antagonist was developed. The new compounds are based on a quinoline core, appended with a required basic aminoethyl moiety, and with potency- and property-modulating heterocyclic substituents. The analogs have nanomolar and subnanomolar potency for the rat and human H3R in various in vitro assays, including radioligand competition binding as well as functional tests of H3 receptor-mediated calcium mobilization and GTPgammaS binding.

View Article and Find Full Text PDF

In this article, we pharmacologically characterized two naturally occurring human histamine H3 receptor (hH3R) isoforms, hH3R(445) and hH3R(365). These abundantly expressed splice variants differ by a deletion of 80 amino acids in the intracellular loop 3. In this report, we show that the hH3R(365) is differentially expressed compared with the hH3R(445) and has a higher affinity and potency for H3R agonists and conversely a lower potency and affinity for H3R inverse agonists.

View Article and Find Full Text PDF

Adenosine kinase (AK) is an enzyme responsible for converting endogenous adenosine (ADO) to adenosine monophosphate (AMP) in an adenosine triphosphate- (ATP-) dependent manner. The structure of AK consists of two domains, the first a large alpha/beta Rossmann-like nucleotide binding domain that forms the ATP binding site, and a smaller mixed alpha/beta domain, which, in combination with the larger domain, forms the ADO binding site and the site of phosphoryl transfer. AK inhibitors have been under investigation as antinociceptive, antiinflammatory, and anticonvulsant as well as antiinfective agents.

View Article and Find Full Text PDF

The goal of this study was to identify a structurally distinct D(4)-selective agonist with superior oral bioavailability to our first-generation clinical candidate 1a (ABT-724) for the potential treatment of erectile dysfunction. Arylpiperazines such as (heteroarylmethyl)piperazine 1a, benzamide 2, and acetamides such as 3a,b exhibit poor oral bioavailability. Structure-activity relationship (SAR) studies with the arylpiperidine template provided potent partial agonists such as 4d and 5k that demonstrated no improvement in oral bioavailability.

View Article and Find Full Text PDF

Terodiline and tolterodine are drugs used to treat urinary incontinence. Terodiline was removed from the market in 1991 for proarrhythmia, whereas tolterodine has a generally benign clinical cardiac profile. To assess differences in the electrophysiologic actions of these drugs, we evaluated their effects on hERG current (HEK cells) and cardiac Purkinje fiber repolarization.

View Article and Find Full Text PDF

The aim of this study was to validate melanin-concentrating hormone (MCH)-1 receptor antagonism as a potential treatment of mood disorders. We attempted to replicate the effects previously reported with SNAP-7941 and expanded the investigation to three other orally bioavailable MCH-1 receptor antagonists with good brain penetration. SNAP-7941 (3-30 mg/kg, i.

View Article and Find Full Text PDF

The histamine H3 receptor is an attractive G protein-coupled receptor drug target that regulates neurotransmission in the central nervous system and plays a role in cognitive and homeostatic functions. Drug discovery efforts by numerous pharmaceutical companies have focused on the preclinical development of H3 receptor antagonists for the potential treatment of attention-deficit hyperactivity disorder, dementias, schizophrenia, as well as obesity and sleep disorders. This receptor exhibits molecular, pharmacological, and functional heterogeneity that informs the preclinical development of effective antagonists.

View Article and Find Full Text PDF

2-[4-(3,4-Dimethylphenlyl)piperazin-1-ylmethyl]-1H benzoimidazole (A-381393) was identified as a potent dopamine D4 receptor antagonist with excellent receptor selectivity. [3H]-spiperone competition binding assays showed that A-381393 potently bound to membrane from cells expressing recombinant human dopamine D4.4 receptor (Ki=1.

View Article and Find Full Text PDF

An SAR study of histamine H3 receptor antagonists based on substituted (R)-2-methyl-1-[2-(5-phenyl-benzofuran-2-yl)-ethyl]-pyrrolidines is presented.

View Article and Find Full Text PDF

4-Amino-5,7-disubstituted pyridopyrimidines are potent, non-nucleoside inhibitors of adenosine kinase (AK). We recently identified a potent, orally efficacious analog, 4 containing a 7-pyridylmorpholine substituted ring system as the key structural element of this template. In this report, we disclose the pharmacologic effects of five- and six-membered heterocyclic ring replacements for the pyridine ring in 4.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session79jvt87eft3ocoohteo4qtv8enlt1uov): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once