Disease-suppressive soils protect plants against soilborne fungal pathogens that would otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the antagonistic activity of the microbial community associated with the plant roots. Considering the enormous taxonomic and functional diversity of the root-associated microbiome, identification of the microbial genera and mechanisms underlying this phenotype is challenging.
View Article and Find Full Text PDFIn disease-suppressive soils, microbiota protect plants from root infections. Bacterial members of this microbiota have been shown to produce specific molecules that mediate this phenotype. To date, however, studies have focused on individual suppressive soils and the degree of natural variability of soil suppressiveness remains unclear.
View Article and Find Full Text PDFMonoclonal antibodies (mABs) are of great biopharmaceutical importance for the diagnosis and treatment of diseases. However, their production in mammalian expression hosts usually requires extensive production times and is expensive. Escherichia coli has become a new platform for production of functional small antibody fragment variants.
View Article and Find Full Text PDFThe filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA.
View Article and Find Full Text PDFStreptomyces lividans displays a distinct dependence on copper to fully initiate morphological development. Evidence has accumulated to implicate the participation of an extracytoplasmic cuproenzyme in morphogenesis. In the present study, we show that GlxA fulfils all criteria to be that cuproenzyme.
View Article and Find Full Text PDFCells that are part of a multicellular structure are typically embedded in an extracellular matrix, which is produced by the community members. These matrices, the composition of which is highly diverse between different species, are typically composed of large amounts of extracellular polymeric substances, including polysaccharides, proteins, and nucleic acids. The functions of all these matrices are diverse: they provide protection, mechanical stability, mediate adhesion to surfaces, regulate motility, and form a cohesive network in which cells are transiently immobilized.
View Article and Find Full Text PDFStreptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS).
View Article and Find Full Text PDFStreptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets.
View Article and Find Full Text PDF