Environ Mol Mutagen
October 2024
The human NEIL1 DNA glycosylase is one of 11 mammalian glycosylases that initiate base excision repair. While substrate preference, catalytic mechanism, and structural information of NEIL1's ordered residues are available, limited information on its subcellular localization, compounded by relatively low endogenous expression levels, have impeded our understanding of NEIL1. Here, we employed a previously developed computational framework to optimize the mitochondrial localization signal of NEIL1, enabling the visualization of its specific targeting to the mitochondrion via confocal microscopy.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
February 2024
Nanobodies (VHHs) are single-domain antibodies with three antigenic CDR regions and are used in diverse scientific applications. Here, an ∼14 kDa nanobody (A5) specific for the endonuclease VIII (Nei)-like 1 or NEIL1 DNA glycosylase involved in the first step of the base-excision repair pathway was crystallized and its structure was determined to 2.1 Å resolution.
View Article and Find Full Text PDFUnlabelled: Nanobodies or VHHs (Variable Heavy domains of Heavy chain) are single domain antibodies that comprise three antigenic complementary determining regions (CDR). Nanobodies are used in numerous scientific applications including, bio-imaging, diagnosis, therapeutics, and macromolecular crystallography. We obtained crystals of a ∼14 kDa nanobody specific for the NEIL1 DNA glycosylase (hereafter called A5) in 0.
View Article and Find Full Text PDFDNA Polymerase β (Polβ) performs two critical enzymatic steps during base excision repair (BER) - gap filling (nucleotidyl transferase activity) and gap tailoring (dRP lyase activity). X-ray repair cross complementing 1 (XRCC1) facilitates the recruitment of Polβ to sites of DNA damage through an evolutionarily conserved Polβ/XRCC1 interaction interface, the V303 loop. While previous work describes the importance of the Polβ/XRCC1 interaction for human Polβ protein stability and recruitment to sites of DNA damage, the impact of disrupting the Polβ/XRCC1 interface on animal viability, physiology, and fertility is unknown.
View Article and Find Full Text PDFThe maintenance of human mitochondrial DNA (mtDNA) is critical for proper cellular function as damage to mtDNA, if left unrepaired, can lead to a diverse array of pathologies. Of the pathways identified to participate in DNA repair within the mitochondria, base excision repair (BER) is the most extensively studied. Protein-protein interactions drive the step-by-step coordination required for the successful completion of this pathway and are important for crosstalk with other mitochondrial factors involved in genome maintenance.
View Article and Find Full Text PDFThe earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection.
View Article and Find Full Text PDF