Publications by authors named "Marllon Nascimento de Oliveira"

A regioselective Pd-catalyzed allylic oxidation of amorphadiene, a key precursor to the antimalarial drug artemisinin, is described. Amorphadiene can be obtained in high yields by fermentation, but it is currently treated as a waste in the industrial semisynthetic artemisinin process. The catalytic step described here is a substitute for the P450 enzymes involved in the artemisinin biosynthesis and opens up new opportunities to supplement a critical step in the current semisynthetic route and increase the potential of the fermentation process.

View Article and Find Full Text PDF

A new access to artemisinin is reported based on a selective photochemical hydrothiolation of amorphadiene, a waste product of the industrial semisynthetic route. This study highlights the discovery of two distinctive activation pathways under solvent-free conditions or using a photocatalyst promoting H-abstraction. Subsequently, a chemoselective oxidation of the resulting photochemically generated thioether, followed by a Pummerer rearrangement, affords dihydroartemisinic aldehyde, a key intermediate in the synthesis of artemisinin.

View Article and Find Full Text PDF

A formal synthesis of artemisinin starting from amorphadiene is described. This new route relies on the development of a catalytic chemo- and diastereoselective hydrosilylation. The practicability of this method is demonstrated by converting amorphadiene to dihydroartemisinic aldehyde using a one-pot hydrosilylation/oxidation sequence, minimizing the number of purifications and maximizing the productivity through a practical one-pot procedure.

View Article and Find Full Text PDF

Artemisinin is an important drug to fight malaria. It is produced either by extraction or via a semisynthetic route involving enzyme engineering. A key intermediate to produce artemisinin by the enzymatic route is dihydroartemisinic aldehyde ().

View Article and Find Full Text PDF

Amorphadiene is a natural product involved in the biosynthesis of the antimalarial drug artemisinin. A convenient four-step synthesis of amorphadiene, starting from commercially available dihydroartemisinic acid, is reported. The targeted molecule is isolated with an overall yield of 85% on a multi-gram scale in four steps with only one chromatography.

View Article and Find Full Text PDF

We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity.

View Article and Find Full Text PDF
Article Synopsis
  • A new method called Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) is introduced, which uses enol carbonates from γ-butyrolactones.
  • This technique produces α,α'-disubstituted γ-butyrolactones with high yields and enantioselectivities, achieving up to 94% enantiomeric excess (ee).
  • The method has also been successfully utilized to create chiral spirocyclic compounds.
View Article and Find Full Text PDF