The upregulation of endogenous antioxidants is a widespread phenomenon in animals that tolerate hypoxia/anoxia for extended periods. The identity of the mobilized antioxidant is often context-dependent and differs among species, tissues, and stresses. Thus, the contribution of individual antioxidants to the adaptation to oxygen deprivation remains elusive.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2020
Preparation for oxidative stress (POS), i.e., the upregulation of endogenous antioxidants, is a widespread response of animals exposed to extreme conditions.
View Article and Find Full Text PDFBackground: Nematodes are used in many different fields of science, including environmental and biomedical research. Counting and/or estimating nematode numbers is required during research. Although being one of the most common procedures, this apparently simple task is a time-consuming process, prone to errors and concerns regarding procedure, reliability, and accuracy.
View Article and Find Full Text PDFProg Mol Subcell Biol
March 2010
In situations of food and water deprivation associated with unfavorable environmental conditions, a number of animal species undergo estivation. This state of locomotor inactivity involves a drastic reduction in the metabolic rate, allowing the estivator to survive long periods of adverse situations. However, the arousal from dormancy causes a rapid increase in oxygen consumption, which may elevate the production of oxygen radicals.
View Article and Find Full Text PDFAntioxidant enzymes, total antioxidant capacity (TOSC) and concentration of reactive oxygen species (ROS) were measured in anterior (A), middle (M) and posterior (P) body regions of Laeonereis acuta after copper (Cu; 62.5 microg/l) exposure. A catalase (CAT) activity gradient observed in control group (lowest in A, highest in P) was not observed in Cu exposed group.
View Article and Find Full Text PDFSeveral environmental pollutants, including metals, can induce oxidative stress. So, the objective of this study was to evaluate the effects of arsenic (As(III), as As(2)O(3)) on the antioxidant responses in the polychaete Laeonereis acuta. Worms were exposed to two environmentally relevant concentrations of As, including the highest previously allowed by Brazilian legislation (50 microg As/l).
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
October 2007
In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries.
View Article and Find Full Text PDFChemosphere
January 2007
The aim of this study was to analyze the total antioxidant capacity (TOSC), generation of reactive oxygen species (ROS) and lipid peroxidation (LPO) in the different body regions of the estuarine polychaeta Laeonereis acuta (Nereididae) sampled at non-polluted (NOPOL) and polluted (POL) sites from Lagoa dos Patos (Southern Brazil). Organisms collected at POL during summer showed similar (p>0.05) TOSC values along the body, but worms collected at NOPOL presented higher (p<0.
View Article and Find Full Text PDF