Background: Obsessive-compulsive disorder (OCD) is characterized by maladaptive repetitive behaviors that persist despite feedback. Using multimodal neuroimaging, we tested the hypothesis that this behavioral rigidity reflects impaired use of behavioral outcomes (here, errors) to adaptively adjust responses. We measured both neural responses to errors and adjustments in the subsequent trial to determine whether abnormalities correlate with symptom severity.
View Article and Find Full Text PDFUmbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality.
View Article and Find Full Text PDFBackground: Responding to errors is a critical first step in learning from mistakes, a process that is abnormal in schizophrenia. To gain insight into the neural and molecular mechanisms of error processing, we used functional MRI to examine effects of a genetic variant in methylenetetrahydrofolate reductase (MTHFR 677C>T, rs1801133) that increases risk for schizophrenia and that has been specifically associated with increased perseverative errors among patients. MTHFR is a key regulator of the intracellular one-carbon milieu, including DNA methylation, and each copy of the 677T allele reduces MTHFR activity by 35%.
View Article and Find Full Text PDFRecognizing errors and adjusting responses are fundamental to adaptive behavior. The error-related negativity (ERN) and error-related functional MRI (fMRI) activation of the dorsal anterior cingulate cortex (dACC) index these processes and are thought to reflect the same neural mechanism. In the present study, we evaluated this hypothesis.
View Article and Find Full Text PDFWhile existing evidence suggests that older adults have compromised spatial navigation abilities, the effects of age on specific aspects of navigational skill are less well specified. The current study examined age effects on spatial navigation abilities considering the multiple cognitive and neural factors that contribute to successful navigation. Young and older adults completed wayfinding and route learning tasks in a virtual environment and aspects of environmental knowledge were assessed.
View Article and Find Full Text PDF