This study examines methane (CH) emission factors from biogas and wastewater treatment plants, based on primary and secondary data collected from 109 facilities. Primary emission data were measured at 19 facilities representing prevalent plant configurations across Europe. Statistical analysis highlights two categorical variables, namely primary feedstock and plant size, expressed as CH production (≤250 kgh: small and medium-sized plants, >250 kgh: large plants), each of which has a significant impact on whole-site CH emissions.
View Article and Find Full Text PDFBiogas and biomethane production can play an important role in a fossil-fuel-free energy supply, provided that process-related methane (CH) losses are minimized. Addressing the lack of representative emission data, this study aims to provide component specific CH emission factors (EFs) for various biogas plant technologies, enabling more accurate emission estimates for the biogas sector and supporting the identification of low emission technologies. Four measurement teams investigated 33 biogas plants in Austria, Germany, Sweden and Switzerland including mainly agricultural and biowaste treating facilities.
View Article and Find Full Text PDFBy converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion.
View Article and Find Full Text PDFBioresour Technol
September 2015
A micrometeorological method, combining an inverse dispersion technique with path-integrated concentration measurements, was applied on an Austrian biogas plant over the period of more than one year to determine emissions of the whole plant. Measurement campaigns were conducted to characterize the emission response to operational activities (e.g.
View Article and Find Full Text PDFAn inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g.
View Article and Find Full Text PDFOpen digestate storage tanks were identified as one of the main methane (CH4) emitters of a biogas plant. The main purpose of this paper is to determine these emission rates using an inverse dispersion technique in conjunction with open-path tunable diode laser spectroscopy (OP-TDLS) concentration measurements for multisource reconstruction. Since the condition number, a measure of "ill-conditioned" matrices, strongly influences the accuracy of source reconstruction, it is used as a diagnostic of error sensitivity.
View Article and Find Full Text PDFStable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions.
View Article and Find Full Text PDFSustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies.
View Article and Find Full Text PDFLandfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance.
View Article and Find Full Text PDF