When hospitalized, infants, particularly preterm, are often subjected to multiple painful needle procedures to collect sufficient blood for metabolic screening or diagnostic purposes using standard clinical tests. For example, at least 100 µL of whole blood is required to perform one creatinine plasma measurement with enzymatic colorimetric assays. As capillary electrophoresis-mass spectrometry (CE-MS) utilizing a sheathless porous tip interface only requires limited amounts of sample for in-depth metabolic profiling studies, the aim of this work was to assess the utility of this method for the determination of creatinine in low amounts of plasma using residual blood samples from adults and infants.
View Article and Find Full Text PDFIn contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae.
View Article and Find Full Text PDFThe simultaneous analysis of cationic and anionic metabolites using capillary electrophoresis-mass spectrometry (CE-MS) has been considered challenging, as often two different analytical methods are required. Although CE-MS methods for cationic metabolite profiling have already shown good performance metrics, the profiling of anionic metabolites often results in relatively low sensitivity and poor repeatability caused by problems related to unstable electrospray and corona discharge when using reversed CE polarity and detection by MS in negative ionization mode. In this protocol, we describe a chemical derivatization procedure that provides a permanent positive charge to acidic metabolites, thereby allowing us to profile anionic metabolites by CE-MS using exactly the same separation conditions as employed for the analysis of basic metabolites.
View Article and Find Full Text PDFCapillary electrophoresis-mass spectrometry (CE-MS) is gaining interest for metabolomics studies because of its high separation efficiency, selectivity, and versatility. The ability to inject nanoliters from only a few microliters of sample in the injection vial makes this approach very suited for volume-limited applications. However, the low injection volumes could compromise the detection sensitivity of CE-MS, thereby potentially limiting its scope in metabolomics.
View Article and Find Full Text PDFThe metabolic profiling of a wide range of chemical classes relevant to understanding sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small muscles, or muscle biopsies, is desired.
View Article and Find Full Text PDFThe composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage).
View Article and Find Full Text PDFThe simultaneous analysis of a broad range of polar ionogenic metabolites using capillary electrophoresis-mass spectrometry (CE-MS) can be challenging, as two different analytical methods are often required, that is, one for cations and one for anions. Even though CE-MS has shown to be an effective method for cationic metabolite profiling, the analysis of small anionic metabolites often results in relatively low sensitivity and poor repeatability. In this work, a novel derivatization strategy based on trimethylmethaneaminophenacetyl bromide was developed to enable CE-MS analysis of carboxylic acid metabolites using normal CE polarity (i.
View Article and Find Full Text PDFCapillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS.
View Article and Find Full Text PDFElectrophoresis
September 2019
The efficient profiling of highly polar and charged metabolites in biological samples remains a huge analytical challenge in metabolomics. Over the last decade, new analytical techniques have been developed for the selective and sensitive analysis of polar ionogenic compounds in various matrices. Still, the analysis of such compounds, notably for acidic ionogenic metabolites, remains a challenging endeavor, even more when the available sample size becomes an issue for the total analytical workflow.
View Article and Find Full Text PDF