Publications by authors named "Marli Luiza Tebaldi"

The emergence of many new viruses in recent times has resulted in a significant scientific challenge for discovering drugs and vaccines that effectively treat and prevent viral diseases. Nanotechnology has opened doors to prevent the spread of several diseases, including those caused by viruses. Polymer-hybrid nanodevices are a class of nanotechnology platforms for biomedical applications that present synergistic properties among their components, with improved performance compared to conventional forms of therapy.

View Article and Find Full Text PDF

Liposomes have become successful nanostructured systems used in clinical practices. These vesicles are able to carry important drug loadings with noteworthy stability. The aim of this work was to develop iron oxide-loaded stealth liposomes as a prospective alternative for the treatment of lung cancer.

View Article and Find Full Text PDF

The unique properties of polymer-hybrid nanosystems enable them to play an important role in different fields such as biomedical applications. Hybrid materials, which are formed by polymer and inorganic- or organic-base systems, have been the focus of many recently published studies whose results have shown outstanding improvements in drug targeting. The development of hybrid polymer materials can avoid the synthesis of new molecules, which is an overall expensive process that can take several years to get to the proper elaboration and approval.

View Article and Find Full Text PDF

Protein-polymer conjugates have achieved tremendous attention in the last few years, since their importance in diverse fields including drug delivery, biotechnology and nanotechnology. Over the past few years, numerous chemical strategies have been developed to conjugate different synthetic polymers onto proteins and great progress has been made. Currently, there are a handful of therapeutic polymer conjugates that have been approved by the FDA, while many hundreds of products are under extensive clinical trials and preclinical development phases.

View Article and Find Full Text PDF

The data presented here are related to the research paper entitled "PCL--P(MMA--DMAEMA) new triblock copolymer for novel pH-sensitive nanocapsules intended for drug delivery to tumors" by Franco et al. [1]. Characterization data of PCL-diol, macroinitiator Br-PCL-Br, homopolymers (PMMA and PDMAEMA) and copolymers (batch 1 and batch 2) analyzed by FTIR, SEC and NMR, as well as, characterization of PCL-NS formulation by laser diffraction and DLS analysis, initial nanocapsule formulations and 1-NC and 2-NC formulations, including hydrodynamic diameter at different pH media, and DMSO cytotoxicity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4jhh9ulr9i62h9dtb4jrp68j427e1h5q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once