Purpose: Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While having the potential to improve the image quality (IQ) over the filtered back projection method (FBP) and produce images quickly, performance generalizability of the data-driven DL methods is not fully understood yet. The main purpose of this work is to investigate the performance generalizability of a low-dose CT image denoising neural network in data acquired under different scan conditions, particularly relating to these three parameters: reconstruction kernel, slice thickness, and dose (noise) level.
View Article and Find Full Text PDFPurpose: To compare cone-beam computed tomography (CT) navigation vs conventional CT image guidance during biopsies.
Materials And Methods: Patients scheduled for image-guided biopsies were prospectively and randomly assigned to conventional CT guidance vs cone-beam CT navigation. Radiation dose, accuracy of final needle position, rate of histopathologic diagnosis, and number of needle repositions to reach the target (defined as pullback to adjust position) were compared.
Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.
Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner.
A straightforward method is presented to estimate peak skin doses (PSDs) delivered by computed tomography (CT) scanners. The measured PSD values are related to the well-known volume CT dose index (CTDI(vol)), displayed on the console of CT scanners. PSD measurement estimates were obtained, in four CT units, by placing radiochromic film on the surface of a CTDI head phantom.
View Article and Find Full Text PDFThe purpose of this project was to assess the feasibility of imaging the velopharynx of adult volunteers during repetitive speech, using gated magnetic resonance imaging (MRI). Although a number of investigators have used conventional MRI in the study of the human vocal tract, the mismatch between the lengthy time necessary to acquire sufficiently detailed images and the rapidity of movement of the vocal tract during speech has forced investigators to acquire images either while the subject is at rest or during sustained utterances. The technique used here acquired a portion of each image during repetitive utterances, building the full image over multiple utterance cycles.
View Article and Find Full Text PDF