Publications by authors named "Marlene Oeffinger"

Article Synopsis
  • * When this DNA is broken, a process called UFMylation helps fix it by changing how certain proteins work and moving them to help repair the damage.
  • * If a protein called UFL1 isn't working properly, it causes problems in repairing the rDNA and can lead to less effective cell function.
View Article and Find Full Text PDF

Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide.

View Article and Find Full Text PDF

Two isoforms of the nuclear pore complex (NPC) have been identified in the yeast S. cerevisiae, which coexist at the periphery of the nucleus and differ by the presence or absence of a nuclear basket. Here, we present a protocol to isolate the two types of NPCs from the same cell extract and dissect their interactomes.

View Article and Find Full Text PDF

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids.

View Article and Find Full Text PDF

For over 40 years, ribosomes were considered monolithic machines that translate the genetic code indiscriminately. However, over the past two decades, there have been a growing number of studies that suggest ribosomes to have a degree of compositional and functional adaptability in response to tissue type, cell environment and stimuli, cell cycle or development state. In such form, ribosomes themselves take an active part in translation regulation through an intrinsic adaptability provided by evolution, which furnished ribosomes with a dynamic plasticity that confers another layer of gene expression regulation.

View Article and Find Full Text PDF

Partitioning of active gene loci to the nuclear envelope (NE) is a mechanism by which organisms increase the speed of adaptation and metabolic robustness to fluctuating resources in the environment. In the yeast Saccharomyces cerevisiae, adaptation to nutrient depletion or other stresses, manifests as relocalization of active gene loci from nucleoplasm to the NE, resulting in more efficient transport and translation of mRNA. The mechanism by which this partitioning occurs remains a mystery.

View Article and Find Full Text PDF

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing.

View Article and Find Full Text PDF

Protein cross-linking mass spectrometry (XL-MS) has been developed into a powerful and robust tool that is now well implemented and routinely used by an increasing number of laboratories. While bulk cross-linking of complexes provides useful information on whole complexes, it is limiting for the probing of specific protein "neighbourhoods," or vicinity interactomes. For example, it is not unusual to find cross-linked peptide pairs that are disproportionately overrepresented compared to the surface areas of complexes, while very few or no cross-links are identified in other regions.

View Article and Find Full Text PDF

Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to get a comprehensive picture of cellular behavior and to understand biological systems. In the past two decades, affinity purification coupled to mass spectrometry has become a powerful tool to comprehensively study interaction networks and their assemblies.

View Article and Find Full Text PDF
Article Synopsis
  • RbgA is a crucial protein for assembling the 50S ribosomal subunit in Bacillus subtilis, and its depletion results in the buildup of an incomplete 45S intermediate.
  • Mutant strains with a variant of RbgA that has lower GTPase activity lead to the formation of unique 44S intermediates, indicating different maturation pathways for ribosomal components.
  • Analysis of these 44S intermediates shows that while RbgA aids the proper folding and maturation order of functional sites, in its absence, the components can mature in a more flexible and less structured manner.
View Article and Find Full Text PDF

The control of RNA metabolism is an important aspect of molecular biology with wide-ranging impacts on cells. Central to processing of coding RNAs is the addition of the methyl-7 guanosine (mG) "cap" on their 5' end. The eukaryotic translation initiation factor eIF4E directly binds the mG cap and through this interaction plays key roles in many steps of RNA metabolism including nuclear RNA export and translation.

View Article and Find Full Text PDF

Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) serves as a central gate for mRNAs to transit from the nucleus to the cytoplasm. The ability for mRNAs to get exported is linked to various upstream nuclear processes including co-transcriptional RNP assembly and processing, and only export competent mRNPs are thought to get access to the NPC. While the nuclear pore is generally viewed as a monolithic structure that serves as a mediator of transport driven by transport receptors, more recent evidence suggests that the NPC might be more heterogenous than previously believed, both in its composition or in the selective treatment of cargo that seek access to the pore, providing functional plasticity to mRNA export.

View Article and Find Full Text PDF

Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis.

View Article and Find Full Text PDF

The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined.

View Article and Find Full Text PDF

Viruses have transformed our understanding of mammalian RNA processing, including facilitating the discovery of the methyl-7-guanosine (mG) cap on the 5' end of RNAs. The mG cap is required for RNAs to bind the eukaryotic translation initiation factor eIF4E and associate with the translation machinery across plant and animal kingdoms. The potyvirus-derived viral genome-linked protein (VPg) is covalently bound to the 5' end of viral genomic RNA (gRNA) and associates with host eIF4E for successful infection.

View Article and Find Full Text PDF

Single-molecule resolution imaging has become an important tool in the study of cell biology. Aptamer-based approaches (e.g.

View Article and Find Full Text PDF

Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence.

View Article and Find Full Text PDF

To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance.

View Article and Find Full Text PDF

Non-coding RNAs have critical roles in biological processes, and RNA chaperones can promote their folding into the native shape required for their function. La proteins are a class of highly abundant RNA chaperones that contact pre-tRNAs and other RNA polymerase III transcripts via their common UUU-3'OH ends, as well as through less specific contacts associated with RNA chaperone activity. However, whether La proteins preferentially bind misfolded pre-tRNAs or instead engage all pre-tRNA substrates irrespective of their folding status is not known.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5b1uenv47589da03m2q59elpvqmh2qds): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once