Publications by authors named "Marlene Balys"

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias.

View Article and Find Full Text PDF

The persistence of a mutation at the time of complete remission warrants germ line analysis.Not all patients harboring germ line mutations have a family history of AML.

View Article and Find Full Text PDF

Adipose tissue (AT) has previously been identified as an extra-medullary reservoir for normal hematopoietic stem cells (HSCs) and may promote tumor development. Here, we show that a subpopulation of leukemic stem cells (LSCs) can utilize gonadal adipose tissue (GAT) as a niche to support their metabolism and evade chemotherapy. In a mouse model of blast crisis chronic myeloid leukemia (CML), adipose-resident LSCs exhibit a pro-inflammatory phenotype and induce lipolysis in GAT.

View Article and Find Full Text PDF

Cytogenetically normal acute myeloid leukemia (CN-AML) patients harboring RUNX1 mutations have a dismal prognosis with anthracycline/cytarabine-based chemotherapy. We aimed to develop an in vivo model of RUNX1-mutated, CN-AML in which the nature of residual disease in this molecular disease subset could be explored. We utilized a well-characterized patient-derived, RUNX1-mutated CN-AML line (CG-SH).

View Article and Find Full Text PDF

Most patients with acute myelogenous leukemia (AML) relapse and die of their disease. Increasing evidence indicates that AML relapse is driven by the inability to eradicate leukemia stem cells (LSC). Thus, it is imperative to identify novel therapies that can ablate LSCs.

View Article and Find Full Text PDF

The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens.

View Article and Find Full Text PDF

Leukemia stem cells (LSCs) represent a biologically distinct subpopulation of myeloid leukemias, with reduced cell cycle activity and increased resistance to therapeutic challenge. To better characterize key properties of LSCs, we employed a strategy based on identification of genes synergistically dysregulated by cooperating oncogenes. We hypothesized that such genes, termed "cooperation response genes" (CRGs), would represent regulators of LSC growth and survival.

View Article and Find Full Text PDF

Negative regulation of innate immune responses is essential to prevent excess inflammation and tissue injury and promote homeostasis. Lysophosphatidic acid (LPA) is a pleiotropic lipid that regulates cell growth, migration, and activation and is constitutively produced at low levels in tissues and in serum. Extracellular LPA binds to specific G protein-coupled receptors, whose function in regulating innate or adaptive immune responses remains poorly understood.

View Article and Find Full Text PDF

We have previously shown that the plant-derived compound parthenolide (PTL) can impair the survival and leukemogenic activity of primary human acute myeloid leukemia (AML) stem cells. However, despite the activity of this agent, PTL also induces cellular protective responses that likely function to reduce its overall cytotoxicity. Thus, we sought to identify pharmacologic agents that enhance the antileukemic potential of PTL.

View Article and Find Full Text PDF

This project was undertaken to more completely understand the consequences of lifetime exposure to methylmercury. A series of experiments examined how perinatal or lifetime exposure to methylmercury affected behavioral performances in the adult mouse at different ages. One hundred female B6C3F1/HSD mice were assigned to one of three dose groups, 0 ppm, 1 ppm, or 3 ppm methylmercury chloride administered in a 5 nM sodium carbonate drinking solution.

View Article and Find Full Text PDF

Parotid gland acinar cells undergo marked hypertrophy and hyperplasia upon systemic exposure to the beta-adrenergic agonist, isoproterenol. This glandular enlargement is accompanied by substantial cellular changes including DNA synthesis, an increase in glandular protein synthesis, and differential changes in RNA transcription. To gain a more detailed understanding of the underlying changes induced by isoproterenol, we have examined the parotid gland gene expression profile of mice up to 24 h post-isoproterenol injection using high-density oligonucleotide arrays.

View Article and Find Full Text PDF