Adoptive transfer of tumor infiltrating lymphocytes (TIL therapy) has proven highly effective for treating solid cancers, including non-small cell lung cancer (NSCLC). However, not all patients benefit from this therapy for yet unknown reasons. Defining markers that correlate with high tumor-reactivity of the autologous TIL products is thus key for achieving better tailored immunotherapies.
View Article and Find Full Text PDFBackground: T cell receptor (TCR)-engineered cells can be powerful tools in the treatment of malignancies. However, tumor resistance by Human Leukocyte antigen (HLA) class I downregulation can negatively impact the success of any TCR-mediated cell therapy. Allogeneic natural killer (NK) cells have demonstrated efficacy and safety against malignancies without inducing graft-versus-host-disease, highlighting the feasibility for an 'off the shelf' cellular therapeutic.
View Article and Find Full Text PDFCurrently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I.
View Article and Find Full Text PDFMetastatic renal cell carcinoma (RCC) has a poor prognosis. Recent advances have shown beneficial responses to immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies. As only a subset of RCC patients respond, alternative strategies should be explored.
View Article and Find Full Text PDFGraft-vs.-leukemia (GVL) reactivity after HLA-matched allogeneic stem cell transplantation (alloSCT) is mainly mediated by donor T cells recognizing minor histocompatibility antigens (MiHA). If MiHA are targeted that are exclusively expressed on hematopoietic cells of recipient origin, selective GVL reactivity without severe graft-vs.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is the second most prevalent type of cancer. With the current treatment regimens, the mortality rate remains high. Therefore, better therapeutic approaches are necessary.
View Article and Find Full Text PDFA sequential, two-step procedure in which T-cell-depleted allogeneic stem cell transplantation is followed by treatment with donor lymphocyte infusion at 6 months can significantly reduce the risk and severity of graft-versus-host disease, with postponed induction of the beneficial graft-versus-leukemia effect. However, patients with high-risk leukemia have a substantial risk of relapse early after transplantation, at a time when administration of donor lymphocytes has a high likelihood of resulting in graft-versus-host disease, disturbing a favorable balance between the graft-versus-leukemia effect and graft-versus-host disease. New therapeutic modalities are, therefore, required to allow early administration of T cells capable of exerting a graft-versus-leukemia effect without causing graft-versus-host disease.
View Article and Find Full Text PDFBy gene transfer of HLA-class I restricted T-cell receptors (TCRs) (HLA-I-TCR) into CD8(+) as well as CD4(+) T-cells, both effector T-cells as well as helper T-cells can be generated. Since most HLA-I-TCRs function best in the presence of the CD8 co-receptor, the CD8αß molecule has to be co-transferred into the CD4(+) T-cells to engineer optimal helper T-cells. In this study, we set out to determine the minimal part of CD8αβ needed for optimal co-receptor function in HLA-I-TCR transduced CD4(+) T-cells.
View Article and Find Full Text PDFPurpose: In human leukocyte antigen (HLA)-matched stem cell transplantation (SCT), it has been shown that beneficial immune response mediating graft-versus-tumor (GVT) responses can be separated from graft-versus-host disease (GVHD) immune responses. In this study, we investigated whether it would be possible to dissect the beneficial immune response of allo-HLA-reactive T cells with potent antitumor reactivity from GVHD-inducing T cells present in the detrimental immune response after HLA-mismatched SCT.
Experimental Design: The presence of specific tumor-reactive T cells in the allo-HLA repertoire was analyzed at the time of severe GVHD after HLA-mismatched SCT, using tetramers composed of different tumor-associated antigens (TAA).
To broaden the applicability of cellular immunotherapy, adoptive transfer of T-cell receptor (TCR) transferred T cells may be an attractive strategy. Using this approach, high numbers of defined antigen-specific T cells can be engineered. As the introduced TCR has to compete for cell surface expression with the endogenous TCR, the introduced TCR chains are under control of a strong viral promotor, which, in contrast to the endogenous promotor, is constitutively active.
View Article and Find Full Text PDFTo broaden the applicability of adoptive T-cell therapy for the treatment of hematologic malignancies, we aim to start a clinical trial using HA-1-TCR transferred virus-specific T cells. TCRs directed against the minor histocompatibility antigen (MiHA) HA-1 are good candidates for TCR gene transfer to treat hematologic malignancies because of the hematopoiesis-restricted expression and favorable frequency of HA-1. For optimal anti-leukemic reactivity, high cell-surface expression of the introduced TCR is important.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2010
Adoptive transfer of T cell receptor (TCR)-transduced T cells may be an attractive strategy to target both hematological malignancies and solid tumors. By introducing a TCR, large numbers of T cells with defined antigen (Ag) specificity can be obtained. However, by introduction of a TCR, mixed TCR dimers can be formed.
View Article and Find Full Text PDFGraft-versus-host disease and graft rejection are major complications of allogeneic HLA-mismatched stem cell transplantation or organ transplantation that are caused by alloreactive T cells. Because a range of acute viral infections have been linked to initiating these complications, we hypothesized that the cross-reactive potential of virus-specific memory T cells to allogeneic (allo) HLA molecules may be able to mediate these complications. To analyze the allo-HLA reactivity, T cells specific for Epstein-Barr virus, cytomegalovirus, varicella zoster virus, and influenza virus were tested against a panel of HLA-typed target cells, and target cells transduced with single HLA molecules.
View Article and Find Full Text PDFAdoptive transfer of antigen-specific T cells is an attractive strategy for the treatment of hematologic malignancies. It has been shown that T cells recognizing minor histocompatibility antigens (mHag) selectively expressed on hematopoietic cells mediate antileukemic reactivity after allogeneic stem cell transplantation. However, large numbers of T cells with defined specificity are difficult to attain.
View Article and Find Full Text PDFIn vitro production of human T cells with known Ag specificity is of major clinical interest for immunotherapy against tumors and infections. We have performed TCRalphabeta gene transfer into human hemopoietic progenitors from postnatal thymus or umbilical cord blood, and subsequently cultured these precursors on OP9 stromal cells expressing the Notch human ligand Delta-like1. We report here that fully mature, functional T cells with controlled Ag specificity are obtained from such cultures.
View Article and Find Full Text PDFRetroviral transfer of T-cell receptors (TCR) to peripheral blood-derived T cells generates large numbers of T cells with the same antigen specificity, potentially useful for adoptive immunotherapy. One drawback of this procedure is the formation of mixed TCR dimers with unknown specificities due to pairing of endogenous and introduced TCR chains. We investigated whether gammadelta T cells can be an alternative effector population for TCR gene transfer because the gammadeltaTCR is not able to form dimers with the alphabetaTCR.
View Article and Find Full Text PDFBackground And Purpose: Von Willebrand factor (vWf), a glycoprotein involved in blood coagulation, is synthesized by endothelial cells. Increased amounts of vWf in blood plasma or tissue samples are indicative of damaged endothelium. In the present study, mRNA expression and localization of vWf were determined in irradiated rat heart tissue.
View Article and Find Full Text PDF