Publications by authors named "Marleen J Meyer"

OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and compared their function to the human and mouse orthologs. We used liver and kidney RNA to clone dog OCT1 and OCT2.

View Article and Find Full Text PDF

Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown.

View Article and Find Full Text PDF

Genome-wide association studies have identified an association between isobutyrylcarnitine (IBC) and organic cation transporter 1 (OCT1) genotypes. Higher IBC blood concentrations in humans with active OCT1 genotypes and experimental studies with mouse OCT1 suggested an OCT1-mediated efflux of IBC. In this study, we wanted to confirm the suggested use of IBC as an endogenous biomarker of OCT1 activity and contribute to a better understanding of the mechanisms behind the association between blood concentrations of carnitine derivatives and OCT1 genotype.

View Article and Find Full Text PDF

Organic cation transporter 1 (OCT1, SLC22A1) is localized in the sinusoidal membrane of human hepatocytes and mediates hepatic uptake of weakly basic or cationic drugs and endogenous compounds. Common amino acid substitutions in OCT1 were associated with altered pharmacokinetics and efficacy of drugs like sumatriptan and fenoterol. Recently, the common splice variant rs35854239 has also been suggested to affect OCT1 function.

View Article and Find Full Text PDF

The most commonly used oral antidiabetic drug, metformin, is a substrate of the hepatic uptake transporter OCT1 (gene name ). However, OCT1 deficiency leads to more pronounced reductions of metformin concentrations in mouse than in human liver. Similarly, the effects of OCT1 deficiency on the pharmacokinetics of thiamine were reported to differ between human and mouse.

View Article and Find Full Text PDF

Objective: Yohimbine pharmacokinetics were determined after oral administration of a single oral dose of yohimbine 5 mg and a microdose of yohimbine 50 µg in relation to different cytochrome P450 (CYP) 2D6 genotypes. The CYP2D6 inhibitor paroxetine was used to investigate the influence on yohimbine pharmacokinetics. Microdosed midazolam was applied to evaluate a possible impact of yohimbine on CYP3A activity and the possibility of combining microdosed yohimbine and midazolam to simultaneously determine CYP2D6 and CYP3A activity.

View Article and Find Full Text PDF

Genetic variants in the hepatic uptake transporter OCT1, observed in 9% of Europeans and white Americans, are known to affect pharmacokinetics and efficacy of tramadol, morphine, and codeine. Here, we report further opioids to be substrates and inhibitors of OCT1. Methylnaltrexone, hydromorphone, oxymorphone, and meptazinol were identified as OCT1 substrates.

View Article and Find Full Text PDF

Trospium chloride, a muscarinic receptor blocker, is poorly absorbed with different rates from areas in the jejunum and the cecum/ascending colon. To evaluate whether organic cation transporter (OCT) 1, OCT2 and multidrug and toxin extrusion (MATE) 1 and MATE2-K are involved in pharmacokinetics, competitions with ranitidine, a probe inhibitor of the cation transporters, were evaluated in transfected HEK293 cells. Furthermore, a drug interaction study with trospium chloride after intravenous (2 mg) and oral dosing (30 mg) plus ranitidine (300 mg) was performed in 12 healthy subjects and evaluated by noncompartmental analysis and population pharmacokinetic modeling.

View Article and Find Full Text PDF

The effects of mutations in the modeled outward-open cleft of rat organic cation transporter 1 (rOCT1) on affinities of substrates and inhibitors were investigated. Human embryonic kidney 293 cells were stably transfected with rOCT1 or rOCT1 mutants, and uptake of the substrates 1-methyl-4-phenylpyridinium (MPP) and tetraethylammonium (TEA) or inhibition of MPP uptake by the nontransported inhibitors tetrabutylammonium (TBuA), tetrapentylammonium (TPeA), and corticosterone was measured. Uptake measurements were performed on confluent cell layers using a 2-minute incubation or in dissociated cells using incubation times of 1, 5, or 10 seconds.

View Article and Find Full Text PDF

Background: Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable.

View Article and Find Full Text PDF