Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention.
View Article and Find Full Text PDFOligonucleotide conjugation has emerged as a versatile molecular tool for regulating protein activity. A state-of-the-art labeling strategy includes the site-specific conjugation of DNA, by employing bioorthogonal groups genetically incorporated in proteins through unnatural amino acids (UAAs). The incorporation of UAAs in chemokines has to date, however, remained underexplored, probably due to their sometimes poor stability following recombinant expression.
View Article and Find Full Text PDFThe application of transition-metal catalysts in living cells presents a promising approach to facilitate reactions that otherwise would not occur in nature. However, the usage of metal complexes is often restricted by their limited biocompatibility, toxicity, and susceptibility to inactivation and loss of activity by the cell's defensive mechanisms. This is especially relevant for ruthenium-mediated reactions, such as ring-closing metathesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
Photodynamic therapy (PDT) is a highly promising therapeutic modality for cancer treatment. The development of stimuli-responsive photosensitizer nanomaterials overcomes certain limitations in clinical PDT. Herein, we report the rational design of a highly sensitive PEGylated photosensitizer-peptide nanofiber (termed PHHPEG NF) that selectively aggregates in the acidic tumor and lysosomal microenvironment.
View Article and Find Full Text PDFThe regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger.
View Article and Find Full Text PDFProtein cages hold much promise as carrier systems in nanomedicine, due to their well-defined size, cargo-loading capacity, and inherent biodegradability. In order to make them suitable for drug delivery, they have to be stable under physiological conditions. In addition, often surface modifications are required, for example, to improve cell targeting or reduce the particle immunogenicity by PEGylation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Polymer-stabilized complex coacervate microdroplets have emerged as a robust platform for synthetic cell research. Their unique core-shell properties enable the sequestration of high concentrations of biologically relevant macromolecules and their subsequent release through the semipermeable membrane. These unique properties render the synthetic cell platform highly suitable for a range of biomedical applications, as long as its biocompatibility upon interaction with biological cells is ensured.
View Article and Find Full Text PDFThe cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules.
View Article and Find Full Text PDFThe tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells.
View Article and Find Full Text PDF