Publications by authors named "Marla I Hertz"

Background: Rapid and accurate prevalence mapping of lymphatic filariasis (LF) is necessary to eliminate this disfiguring and disabling neglected tropical disease. Unfortunately, rapid tests such as the filariasis test strip (FTS) for , the causative agent of LF in Africa, can cross-react with antigens circulating in some persons infected by the African eye worm, , rendering the test unreliable in eleven co-endemic nations. The intended target of the FTS is a heavily glycosylated circulating filarial antigen (Wb-CFA).

View Article and Find Full Text PDF

The Global Program to Eliminate Lymphatic Filariasis (GPELF) relies heavily on a rapid diagnostic test (RDT) to a Wuchereria bancrofti circulating filarial antigen (Wb-CFA) to identify endemic areas and for determining when mass drug administration can stop. The antigen contains a carbohydrate epitope that is recognized by monoclonal antibody AD12. Og4C3, a monoclonal antibody that is used in a commercial ELISA for Wb-CFA recognizes the same moiety.

View Article and Find Full Text PDF

Galectins are among the most abundant excretory/secretory (ES) products of filarial worms, but their role in filarial biology is poorly understood. Galectin-2 (Lec-2), a major component of Brugia malayi extracellular vesicles, is released by filarial worms, and was recently identified in the serum of persons with loiasis. We therefore sought to clone and characterize Lec-2, and to develop reagents to examine its potential as a biomarker and its role in parasite biology.

View Article and Find Full Text PDF

Background: Lymphatic filariasis (LF) is a neglected tropical disease, and the Global Program to Eliminate LF delivers mass drug administration (MDA) to 500 million people every year. Adverse events (AEs) are common after LF treatment.

Methodology/principal Findings: To better understand the pathogenesis of AEs, we studied LF-patients from a treatment trial.

View Article and Find Full Text PDF

The Global Program to Eliminate Lymphatic Filariasis (LF) relies on rapid diagnostic tests (RDTs) to determine where annual mass drug administration for LF is required and when it can be stopped. These tests detect a Wuchereria bancrofti glycoprotein in the blood of infected persons via a carbohydrate moiety recognized by the monoclonal antibodies AD12 and DH6.5.

View Article and Find Full Text PDF

Saccharomyces cerevisiae sir2Δ or top1Δ mutants exhibit similar phenotypes involving ribosomal DNA, including (i) loss of transcriptional silencing, resulting in non-coding RNA hyperproduction from cryptic RNA polymerase II promoters; (ii) alterations in recombination; and (iii) a general increase in histone acetylation. Given the distinct enzymatic activities of Sir2 and Top1 proteins, a histone deacetylase and a DNA topoisomerase, respectively, we investigated whether genetic and/or physical interactions between the two proteins could explain the shared ribosomal RNA genes (rDNA) phenotypes. We employed an approach of complementing top1Δ cells with yeast, human, truncated, and chimeric yeast/human TOP1 constructs and of assessing the extent of non-coding RNA silencing and histone H4K16 deacetylation.

View Article and Find Full Text PDF

The 5' leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work, we examine the internal ribosome entry site (IRES) located in the 5' leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25).

View Article and Find Full Text PDF

During viral infection or cellular stress, cap-dependent translation is shut down. Proteins that are synthesized under these conditions use alternative mechanisms to initiate translation. This study demonstrates that at least two alternative translation initiation routes, internal ribosome entry site (IRES) initiation and ribosome shunting, rely on ribosomal protein S25 (RPS25).

View Article and Find Full Text PDF

Some viral and cellular messages use an alternative mechanism to initiate protein synthesis that involves internal recruitment of the ribosome to an internal ribosome entry site (IRES). The Dicistroviridae intergenic regions (IGR) have been studied as model IRESs to understand the mechanism of IRES-mediated translation. In this study, the in vivo activity of IGR IRESs were compared.

View Article and Find Full Text PDF

The Dicistroviridae is a growing virus family characterized by a dicistronic genome, wherein each open reading frame (ORF) is translated from an independent internal ribosome entry site (IRES). The 5' IRES that translates the first open reading frame (ORF1) is similar to the picornaviral IRESs. However the second IRES, referred to as the intergenic region (IGR) IRES, - translates ORF2 by and uses an unusual mechanism of initiating protein synthesis.

View Article and Find Full Text PDF

Most eukaryotic mRNAs are translated using a cap-dependent mechanism of translation. However, approximately 10% of mammalian mRNAs initiate translation using a cap-independent mechanism that is not well understood. These mRNAs contain an internal ribosome entry site (IRES) located in the 5' untranslated region.

View Article and Find Full Text PDF