Publications by authors named "Markus Zehringer"

In this paper, experiences of the last 20 years with the PERALS-technique are described. PERALS stands for photo electron-rejecting alpha liquid scintillation. This liquid scintillation technique was developed by Jack McDowell in the 1970s and is a powerful technique for the analyses of many natural alpha nuclides and also the beta nuclide Sr.

View Article and Find Full Text PDF

Soil transport on fully vegetated land surfaces is typically detachment limited. Rates of soil and nutrient transport, and ultimately long-term landscape evolution, are controlled by processes that supply soil material for entrainment and transport. Despite their on-going nature, many such processes operate at low rates and have not been subject to detailed investigation.

View Article and Find Full Text PDF

Tea plantations may be strongly affected by radioactive fallout. Tea plantations on the Turkish coast of the Black Sea were heavily contaminated by the fallout from the reactor fire at the Chernobyl nuclear power plant in 1986. Two years later, the contamination level was reduced by about 90%.

View Article and Find Full Text PDF

An important process in the production of drinking water is the recharge of the withdrawn ground water with river water at protected recharge fields. While it is well known that undisturbed soils are efficiently filtering and adsorbing radionuclides, the goal of this study was to investigate their behaviour in an artificial recharge site that may receive rapid and additional input of radionuclides by river water (particularly when draining a catchment including nuclear power plants (NPP)). Soil profiles of recharge sites were drilled and analysed for radionuclides, specifically radiocesium (Cs), radiostrontium (Sr) and plutonium (Pu).

View Article and Find Full Text PDF

Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution.

View Article and Find Full Text PDF