We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.
View Article and Find Full Text PDFExtended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector.
View Article and Find Full Text PDFWe developed a visible-red to near-infrared wavelength tunable all-solid-state laser system utilizing an optical parametric generation process in a MgO doped PPLN crystal pumped at 532 nm by an amplified and frequency doubled picosecond passively Q-switched Nd:YVO microchip laser. A broad bandwidth, tuneable over 300 nm between 710 nm to 1015 nm, is accessible. Depending on the green pump light pulse energy, pulses with durations down to 69 ps as well as pulses with energies above 2 µJ were achieved with kHz repetition rates.
View Article and Find Full Text PDFMultiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm.
View Article and Find Full Text PDFWe present a monolithic integrated passively Q-switched sub-150 ps microchip laser at 1064 nm with a wedged Nd:YVO crystal operating up to a repetition rate of 1 MHz. The wedge enables to change the cavity length by a small amount to fine tune the spectral cavity mode position over the full gain bandwidth of Nd:YVO and hence to optimize the output power. This additional degree of freedom may be a suitable approach to increase the wafer scale mass production yield or also to simplify frequency tuning of CW single-frequency microchip lasers.
View Article and Find Full Text PDFSingle longitudinal mode continuous-wave operation of distributed-feedback (DFB) laser diodes based on GaN is demonstrated using laterally coupled 10th-order surface Bragg gratings. The gratings consist of V-shaped grooves alongside a 1.5 µm wide p-contact stripe fabricated by using electron-beam lithography and plasma etching.
View Article and Find Full Text PDFNano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials.
View Article and Find Full Text PDFResidual p-type doping from carbon has been identified as the root cause of excess absorption losses in (Al)GaAs/AlGaAs Bragg mirrors for high-finesse optical cavities when grown by metalorganic vapor phase epitaxy (MOVPE). Through optimization of the growth parameters with the aim of realizing low carbon uptake, we have shown a path for decreasing the parasitic background absorption in these mirrors from 100 to the 10 ppm range near 1064 nm. This significant reduction is realized via compensation of the carbon acceptors by intentional doping with the donor silicon in the uppermost layer pairs of 40-period GaAs/AlGaAs Bragg mirrors.
View Article and Find Full Text PDFThe effects of composition and p-doping profile of the AlGaN:Mg electron blocking layer (EBL) in 310 nm ultraviolet B (UV-B) light emitting diodes (LEDs) have been investigated. The carrier injection and internal quantum efficiency of the LEDs were simulated and compared to electroluminescence measurements. The light output power depends strongly on the temporal biscyclopentadienylmagnesium (Cp 2 Mg) carrier gas flow profile during growth as well as on the aluminum profile of the AlGaN:Mg EBL.
View Article and Find Full Text PDFWe present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.
View Article and Find Full Text PDF1060 nm high-brightness vertical broad-area edge-emitting lasers providing anastigmatic high optical power into a narrow circular beam profile are demonstrated. Ridge-waveguide (RW) lasers yield record 2.2 W single-transverse mode power in the 1060-nm wavelength range under continuous-wave (cw) operation at room temperature with excellent beam quality factor M ≤ 2.
View Article and Find Full Text PDFAlmost chirp-free pulses with a duration of 190 fs were achieved from a mode-locked semiconductor disk laser (SDL) emitting at approximately 1045 nm. Pulse shaping was different from the soliton-like mode-locking process known from lasers using dielectric gain media; passive amplitude modulation provided by a fast saturable absorber was essential. The spectrum of the absorber had to be matched to the gain spectrum within a few nm.
View Article and Find Full Text PDFTransform-limited pulses as short as 290 fs at 1036 nm are generated by a diode-pumped semiconductor disk laser. The all-semiconductor laser employs a graded-gap-barrier design in the gain section. A fast saturable absorber mirror serves as a passive mode-locker.
View Article and Find Full Text PDFPassive mode-locked laser operation based on an Yb-doped lanthanum scandium borate crystal is demonstrated. Pulse durations as short as 58 fs and 67 fs were achieved applying a Ti:sapphire- and a diode-laser pump source, respectively. The average output powers were 73 mW and 39 mW at a repetition rate of 90 MHz.
View Article and Find Full Text PDFPassive mode locking of the ytterbium doped orthovanadate crystal Yb:LuVO(4) is reported for the first time. We demonstrate what we believe to be the shortest pulses directly generated with an Yb-doped crystalline laser using a semiconductor saturable absorber. The pulses at 1036 nm have a duration as short as 58 fs for an average power of 85 mW.
View Article and Find Full Text PDFMode locking based on an epitaxial composite of the monoclinic double tungstate crystal Yb:KLu(WO4)2 is realized. A 100 microm thin Yb:KLu(WO4)2 layer grown on a KLu(WO4)2 substrate is used as an active medium in a laser passively mode locked by a semiconductor saturable absorber. Pulse durations of 114 fs have been achieved for an average power of 31 mW at 1030 nm.
View Article and Find Full Text PDF