The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3).
View Article and Find Full Text PDFBeilstein J Org Chem
August 2016
Vaccines against S. pneumoniae, one of the most prevalent bacterial infections causing severe disease, rely on isolated capsular polysaccharide (CPS) that are conjugated to proteins. Such isolates contain a heterogeneous oligosaccharide mixture of different chain lengths and frame shifts.
View Article and Find Full Text PDFβ-Glucans are a group of structurally heterogeneous polysaccharides found in bacteria, fungi, algae and plants. β-(1,3)-D-Glucans have been studied in most detail due to their impact on the immune system of vertebrates. The studies into the immunomodulatory properties of these glucans are typically carried out with isolates that contain a heterogeneous mixture of polysaccharides of different chain lengths and varying degrees of branching.
View Article and Find Full Text PDFClostridium difficile strain ribotype 027 is a hypervirulent pathogen that is responsible for recent, severe outbreaks of serious nosocomial infections. As a foundation for the development of a preventative carbohydrate-based vaccine, we have synthesized a pentasaccharide cell wall repeating unit from PS-I unique to this strain, by the linear assembly of four monosaccharide building blocks.
View Article and Find Full Text PDF