Tracking chemical reactions by measuring incurred mass shifts upon successful binding is a direct and attractive alternative to existing assays based on chemical tags. Traditional methods use liquid chromatography-mass spectrometry (LC-MS), and because the required buffers are not amenable to direct MS injection, sample pre-treatment is needed to desalt. This leads to analysis times from ten seconds to minutes per sample, limiting throughput and preventing widespread application.
View Article and Find Full Text PDFOfatumumab is the first, fully human, anti-CD20 monoclonal antibody in Phase 3 development for multiple sclerosis (MS). The study focused on changes in lymphocyte subsets in blood and lymphoid tissues and on potential novel biomarkers as a result of anti-CD20 antibody action in Cynomolgus monkeys treated with human equivalent doses of subcutaneous (s.c.
View Article and Find Full Text PDFRationale: Antibody-drug conjugates (ADCs) are some of the most promising antibody-related therapeutics. The fate of the cytotoxic moiety of ADCs in vivo after proteolytic degradation of the antibody needs to be well understood in order to mitigate toxicity risks and design proper first in patient studies.
Methods: The feasibility of liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry (LESA-μLC/MS/MS) was tested for direct surface sampling of two possible ADC catabolites composed of synthetically modified maytansinoid (DM1) and 4-[N-maleimidomethyl]cyclohexane-1-carbonyl (MCC) from rat liver and tumor tissue.
J Am Soc Mass Spectrom
June 2015
The new open-source software and hardware matrix deposition device named iMatrixSpray was optimized and specified for homogeneity, reproducibility, and sensitivity in MS imaging experiments. The results confirm the design claims, with the device delivering uniform coatings with a constant quality from experiment to experiment. The robustness in combination with the open design allows developing and sharing of matrix deposition and sample preparation protocols between labs.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
May 2015
Among the needs usually expressed by teams using mass spectrometry imaging, one that often arises is that for user-friendly software able to manage huge data volumes quickly and to provide efficient assistance for the interpretation of data. To answer this need, the Computis European project developed several complementary software tools to process mass spectrometry imaging data. Data Cube Explorer provides a simple spatial and spectral exploration for matrix-assisted laser desorption/ionisation-time of flight (MALDI-ToF) and time of flight-secondary-ion mass spectrometry (ToF-SIMS) data.
View Article and Find Full Text PDFMass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) was applied to samples from mouse skin and from a human in vitro 3D skin model in order to assess its suitability in the context of photosafety evaluation. MSI proved to be a suitable method for the detection of the model compound sparfloxacin in biological tissues following systemic administration (oral gavage, 100 mg/kg) and subsequent exposure to simulated sunlight. In the human in vitro 3D skin model, a concentration-dependent increase as well as an irradiation-dependent decrease of sparfloxacin was observed.
View Article and Find Full Text PDFA device was built for matrix deposition in mass spectrometric imaging. This spray-type instrument requires no user interaction other than providing the spray solution and selecting the pre-defined or custom-built method. Robustness was achieved by utilizing a delta-robotics design in combination with a simple liquid system.
View Article and Find Full Text PDFAbsorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques.
View Article and Find Full Text PDFThe clinical application of mass spectrometry imaging has developed into a sizable subdiscipline of proteomics and metabolomics because its seamless integration with pathology enables biomarkers and biomarker profiles to be determined that can aid patient and disease stratification (diagnosis, prognosis, and response to therapy). Confident identification of the discriminating peaks remains a challenge owing to the presence of nontryptic protein fragments, large mass-to-charge ratio ions that are not efficiently fragmented via tandem mass spectrometry or a high density of isobaric species. A public database of identifications has been initiated to aid the clinical development and implementation of mass spectrometry imaging.
View Article and Find Full Text PDFSince its introduction mass spectrometry imaging (MSI) has proven to be a powerful tool for the localization of molecules in biological tissues. In drug discovery and development, understanding the distribution of both drug and its metabolites is of critical importance. Traditional methods suffer from a lack of spatial information (tissue extraction followed by LCMS) or lack of specificity resulting in the inability to resolve parent drug from its metabolites (whole body autoradiography).
View Article and Find Full Text PDFThe application of mass spectrometry imaging (MS imaging) is rapidly growing with a constantly increasing number of different instrumental systems and software tools. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software. imzML data is divided in two files which are linked by a universally unique identifier (UUID).
View Article and Find Full Text PDFThe driving force behind the high and increasing popularity of imaging mass spectrometry is its demonstrated potential for the determination of new diagnostic/prognostic biomarkers and its ability to simultaneously trace the distributions of pharmaceuticals and their metabolites in tissues without the need to develop expensive radioactively-labeled analogues. Both of these applications would benefit from standardized methods, for the development of novel MS-based molecular histology tests and governmental-approved MS-based assays for pharmaceutical development. In addition, the broader scientific community would benefit from the increased accessibility of the technique.
View Article and Find Full Text PDFMALDI-MSI is a powerful technology for localizing drug and metabolite distributions in biological tissues. To enhance our understanding of tuberculosis (TB) drug efficacy and how efficiently certain drugs reach their site of action, MALDI-MSI was applied to image the distribution of the second-line TB drug moxifloxacin at a range of time points after dosing. The ability to perform multiple monitoring of selected ion transitions in the same experiment enabled extremely sensitive imaging of moxifloxacin within tuberculosis-infected rabbit lung biopsies in less than 15 min per tissue section.
View Article and Find Full Text PDFMALDI-MSI has been demonstrated to be a suitable technique in pharmaceutical research for providing information of the distribution of low molecular weight compounds such as drugs and their metabolites within whole-body tissue sections. Important ADME information can be determined by MALDI-MSI analysis of the distribution of drugs and metabolites in whole-body tissue sections taken from animals killed at a range of time points postdose. In this example we applied MALDI-MSI to the localization of a compound and its primary metabolite in whole-body mouse sections.
View Article and Find Full Text PDFWhole-body autoradiography ((WBA) or quantitative WBA (QWBA)), microautoradiography (MARG), matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), and secondary ion mass spectrometric imaging (SIMS-MSI) are high-resolution, molecular imaging techniques used to study the tissue distribution of radiolabeled and nonlabeled compounds in ex vivo, in situ biological samples. WBA, which is the imaging of the whole-body of lab animals, and/or their organ systems; and MARG, which provides information on the localization of radioactivity in histological preparations and at the cellular level, are used to support drug discovery and development efforts. These studies enable the conduct of human radiolabeled metabolite studies and have provided pharmaceutical scientists with a high resolution and quantitative method of accessing tissue distribution.
View Article and Find Full Text PDFScreening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities.
View Article and Find Full Text PDFThe fast imaging of complete rat sections by matrix-assisted laser desorption/ionization on a triple quadrupole linear ion trap is demonstrated. After administration of the pharmaceutical compound (MW=467.4 u) at 0.
View Article and Find Full Text PDFHuman beta-amyloid precursor protein (APP) transgenic mice are commonly used to test potential therapeutics for Alzheimer's disease. We have characterized the dynamics of beta-amyloid (Abeta) generation and deposition following gamma-secretase inhibition with compound LY-411575 [N(2)-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide]. Kinetic studies in preplaque mice distinguished a detergent-soluble Abeta pool in brain with rapid turnover (half-lives for Abeta40 and Abeta42 were 0.
View Article and Find Full Text PDFSince the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems.
View Article and Find Full Text PDFMass spectrometric imaging was applied to assess compound distributions on whole-body sections of mice after i.v. dosing of a beta-peptide and an alpha-peptide control.
View Article and Find Full Text PDFLabel-free molecular imaging by mass spectrometry allows simultaneous mapping of multiple analytes in biological tissue sections. In this chapter, the application of this new technology to the detection Abeta peptides in mouse brain sections is discussed.
View Article and Find Full Text PDF