Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus.
View Article and Find Full Text PDFMutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON∆165.
View Article and Find Full Text PDFThe RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules.
View Article and Find Full Text PDFThe eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs).
View Article and Find Full Text PDFMuch of what is known about mammalian cell regulation has been achieved with the aid of transiently transfected cells. However, overexpression can violate balanced gene dosage, affecting protein folding, complex assembly and downstream regulation. To avoid these problems, genome engineering technologies now enable the generation of stable cell lines expressing modified proteins at (almost) native levels.
View Article and Find Full Text PDFLinear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization.
View Article and Find Full Text PDFAnalysis of the regulation of msl-2 mRNA by Sex lethal (SXL), which is critical for dosage compensation in Drosophila, has uncovered a mode of translational control based on common 5' untranslated region elements, upstream open reading frames (uORFs), and interaction sites for RNA-binding proteins. We show that SXL binding downstream of a short uORF imposes a strong negative effect on major reading frame translation. The underlying mechanism involves increasing initiation of scanning ribosomes at the uORF and augmenting its impediment to downstream translation.
View Article and Find Full Text PDFLinear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported.
View Article and Find Full Text PDFThe yeast integral membrane protein Ist2 is encoded by a bud-localised mRNA and accumulates at patch-like domains of the cell periphery, either at the cortical ER or at ER-associated domains of the plasma membrane. Transport of IST2 mRNA and local protein synthesis are not prerequisite for this localisation, indicating that Ist2 can travel through the general ER to membranes at the cell periphery. Here, we describe that the accumulation of Ist2 at the cortical ER requires a cytosolically exposed complex sorting signal that can interact with lipids at the yeast plasma membrane.
View Article and Find Full Text PDFFrancisella tularensis, a small Gram-negative facultative intracellular bacterium, is the causative agent of tularaemia, a severe zoonotic disease transmitted to humans mostly by vectors such as ticks, flies and mosquitoes. The disease is endemic in many parts of the northern hemisphere. Among animals, the most affected species belong to rodents and lagomorphs, in particular hares.
View Article and Find Full Text PDFBackground: The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology.
View Article and Find Full Text PDFCancer transcription microarray studies commonly deliver long lists of "candidate" genes that are putatively associated with the respective disease. For many of these genes, no functional information, even less their relevance in pathologic conditions, is established as they were identified in large-scale genomics approaches. Strategies and tools are thus needed to distinguish genes and proteins with mere tumor association from those causally related to cancer.
View Article and Find Full Text PDFThe wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium.
View Article and Find Full Text PDF