Publications by authors named "Markus Seidl"

Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping.

View Article and Find Full Text PDF

There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K.

View Article and Find Full Text PDF

High-density amorphous water is simulated by use of isothermal-isobaric molecular dynamics at a pressure of 0.3 GPa making use of several water models (SPC/E, TIP3P, TIP4P variants, and TIP5P). Heating/cooling cycles are performed in the temperature range 80-280 K and quantities like density, total energy, and mobility are analysed.

View Article and Find Full Text PDF

The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules.

View Article and Find Full Text PDF

Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.

View Article and Find Full Text PDF

Many acronyms are used in the literature for describing different kinds of amorphous ice, mainly because many different preparation routes and many different sample histories need to be distinguished. We here introduce these amorphous ices and discuss the question of how many of these forms are of relevance in the context of polyamorphism. We employ the criterion of reversible transitions between amorphous "states" in finite intervals of pressure and temperature to discriminate between independent metastable amorphous "states" and between "substates" of the same amorphous "state".

View Article and Find Full Text PDF

The authors introduce and describe pulse train control (PTC) of population branching in strongly coupled processes as a novel control tool for the separation of competing multiphoton processes. Control strategies are presented based on the different responses of processes with different photonicities and/or different frequency detunings to the pulse-to-pulse time delay and the pulse-to-pulse phase shift in pulse trains. The control efficiency is further enhanced by the property of pulse trains that complete population transfer can be obtained over an extended frequency range that replaces the resonance frequency of simple pulses.

View Article and Find Full Text PDF