Agarose hydrogels filled with cellulose nanowhiskers were strained in uniaxial stretching under different humidity conditions. The orientation of the cellulose whiskers was examined before and after testing with an X-ray laboratory source and monitored in situ during loading by synchrotron X-ray diffraction. The aim of this approach was to determine the process parameters for reorienting the cellulose nanowhiskers toward a preferential direction.
View Article and Find Full Text PDFActuated plant materials are a source of inspiration for the design of adaptive materials and structures that are responsive to specific external stimuli. Hydro-responsive, metabolism-independent plant movements are particularly fascinating, because the extracted concepts are more amenable to transfer into engineering than those dependent on cellular activity. Here we investigate the structural and compositional basis of a sophisticated plant movement mechanism--the hydration-dependent unfolding of ice plant seed capsules.
View Article and Find Full Text PDFPlant and animal biomechanists have much in common. Although their frame of reference differs, they think about the natural world in similar ways. While researchers studying animals might explore airflow around flapping wings, the actuation of muscles in arms and legs, or the material properties of spider silk, researchers studying plants might explore the flow of water around fluttering seaweeds, the grasping ability of climbing vines, or the material properties of wood.
View Article and Find Full Text PDF