Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored.
View Article and Find Full Text PDFAccurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast , peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins.
View Article and Find Full Text PDFImport of peroxisomal matrix proteins with a type 1 peroxisomal targeting signal (PTS1) in is facilitated by cytosolic import receptors Pex5p and Pex9p. While Pex5p has a broad specificity for all PTS1 proteins independent of the growth conditions, Pex9p is only expressed in fatty-acid containing media to mediate peroxisomal import of the two malate synthases, Mls1p and Mls2p, as well as the glutathione transferase Gto1p. Pex5p-cargo complexes dock at the peroxisomal membrane, translocate their cargo-protein via a transient pore and are recycled into the cytosol for a further round of import.
View Article and Find Full Text PDF