Publications by authors named "Markus Riegler"

Article Synopsis
  • Mito-nuclear coadaptation is critical for cellular function and can lead to incompatibilities when isolated populations hybridize, contributing to speciation.
  • This study focused on stingless bee populations in Queensland, Australia, identifying three distinct populations with significant genetic divergence in their mitochondrial genomes (over 12% nucleotide divergence).
  • Evidence of gene flow was found in specific zones, particularly around biogeographic barriers and areas influenced by beekeeping, suggesting that while these populations exhibit strong genetic differentiation, they are not completely reproductively isolated yet.
View Article and Find Full Text PDF

Many arthropods carry maternally inherited endosymbionts that cause cytoplasmic incompatibility (CI), manifested as embryonic mortality in matings of infected males with uninfected females. Infected females, however, do not suffer this cost. Therefore, in populations with mixed endosymbiont infections, selection is expected to favour mechanisms that enable hosts to avoid or mitigate CI.

View Article and Find Full Text PDF

Background: Many studies have demonstrated that tephritid fruit fly larvae are highly susceptible to entomopathogenic nematodes (EPNs) and may become infected as they enter the soil to pupate. However, the susceptibility of adult tephritids and their suitability as EPN targets have been less studied. We performed laboratory assays with 12 Australian EPN strains of Heterorhabditis bacteriophora, Heterorhabditis indica and Heterorhabditis zealandica in adults of the Queensland fruit fly, Bactrocera tryoni.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the performance of phosphorus-enabled land surface models in predicting CO effects on ecosystem responses to climate change, using data from a long-term forest experiment.
  • - Most models accurately predicted the direction and magnitude of CO effects on carbon sequestration but tended to overestimate plant carbon uptake and growth.
  • - Key areas for improvement include photosynthesis scaling, plant nutrient balance, belowground carbon allocation, and their impact on plant-microbial interactions, suggesting models may overestimate the global carbon sink driven by CO.
View Article and Find Full Text PDF

DNA methylation is an epigenetic process that involves the chemical modification of DNA, leading to the regulation of its transcriptional activity. It is primarily known for the addition of methyl groups to cytosine in DNA. The whitefly Bemisia tabaci is a polyphagous pest insect and a vector that is responsible for transmitting numerous plant viruses, resulting in significant economic losses in agricultural crops globally.

View Article and Find Full Text PDF

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO concentrations depends on soil nutrient availability. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO (refs. ), but uncertainty about ecosystem P cycling and its CO response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed field and laboratory populations of Z. cucurbitae from Bangalore, India, identifying ten types of RNA viruses, with different infection profiles in the two populations indicating the potential for covert infections.
  • * The study further contributed to understanding the RNA virus diversity in Indian Z. cucurbitae populations and revealed persistent infections in lab settings, with additional discoveries of virus genomes in populations from Eastern Asia and Hawaii.
View Article and Find Full Text PDF

is a plant-pathogenic bacterium associated with a diverse range of host plant species. It has undergone substantial reclassification and currently consists of 14 different subspecies or pathovars that are responsible for a wide range of plant diseases. Whole-genome sequencing (WGS) provides a cutting-edge advantage over other diagnostic techniques in epidemiological and evolutionary studies of .

View Article and Find Full Text PDF

Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology.

View Article and Find Full Text PDF

Sympatric lineages of inbreeding species provide an excellent opportunity to investigate species divergence patterns and processes. Many ambrosia beetle lineages (Curculionidae: Scolytinae) reproduce by predominant inbreeding through sib mating in nests excavated in woody plant parts wherein they cultivate symbiotic ambrosia fungi as their sole source of nutrition. The Xyleborini ambrosia beetle species Cnestus solidus and Cnestus pseudosolidus are sympatrically distributed across eastern Australia and have overlapping morphological variation.

View Article and Find Full Text PDF
Article Synopsis
  • The melon fly (Zeugodacus cucurbitae) is a significant pest affecting cucurbit crops, leading to considerable yield loss and economic impact.
  • The CRISPR/Cas9 system is a powerful genome editing tool that can target specific genes to create stable genetic changes, which can help manage pest traits more efficiently without needing extensive genetic data.
  • In this study, researchers successfully used CRISPR/Cas9 to mutate the white gene in melon flies, resulting in a white eye phenotype, which aids in understanding gene function and could lead to innovative pest control methods like precision guided sterile insect technique (pgSIT).
View Article and Find Full Text PDF

Stingless bees (Meliponini) are important pollinators throughout the world's tropical and subtropical regions. Understanding their thermal tolerance is key to predicting their resilience to changing climates and increasingly frequent extreme heat events. We examined critical thermal maxima (CT), survival during 1-8 h heat periods, chill coma recovery and thermal preference for Australian meliponine species that occupy different climates across their ranges: Tetragonula carbonaria (tropical to temperate regions), T.

View Article and Find Full Text PDF

Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes.

View Article and Find Full Text PDF

Stingless bees are important social corbiculate bees, fulfilling critical pollination roles in many ecosystems. However, their gut microbiota, particularly the fungal communities associated with them, remains inadequately characterised. This knowledge gap hinders our understanding of bee gut microbiomes and their impacts on the host fitness.

View Article and Find Full Text PDF

Infections of insects with insect-specific RNA viruses are common and can affect host fitness and health. Previously, persistent RNA virus infections were detected in tephritid fruit flies, including the Queensland fruit fly (Bactrocera tryoni), Australia's most significant horticultural pest. Their transmission modes and efficiency are unclear yet may influence virus epidemiology in field and laboratory populations.

View Article and Find Full Text PDF

Many heterostigmatic mites (Acari: Prostigmata: Heterostigmata) display a wide range of symbiotic interactions, from phoresy to parasitism, with a variety of insects. Australia is expected to harbour a rich diversity of heterostigmatic mites; however, its phoretic fauna and its host associations remain mainly unexplored. We conducted a short exploration of Australian insect-associated phoretic mites in summer 2020 and found two new phoretic heterostigmatic species on a semiaquatic hydrophilid beetle species, (Montrouzier, 1860) (Coleoptera: Hydrophilidae).

View Article and Find Full Text PDF

It is hard to overemphasize the importance of endosymbionts in arthropod biology, ecology and evolution. Some endosymbionts can complement host metabolic function or provide defence against pathogens; others, such as ubiquitous and , have evolved strategies to manipulate host reproduction. A common reproductive manipulation strategy is cytoplasmic incompatibility (CI) between differently infected individuals which can result in female mortality or male development of fertilized eggs in haplodiploid hosts.

View Article and Find Full Text PDF

Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce.

View Article and Find Full Text PDF

Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia.

View Article and Find Full Text PDF

We have investigated the impact of recognized biogeographic barriers on genetic differentiation of grey box (), a common and widespread tree species of the family Myrtaceae in eastern Australian woodlands, and its previously proposed four subspecies , , , and . A range of phylogeographic analyses were conducted to examine the population genetic differentiation and subspecies genetic structure in in relation to biogeographic barriers. Slow evolving markers uncovering long term processes (chloroplast DNA) were used to generate a haplotype network and infer phylogeographic barriers.

View Article and Find Full Text PDF

In this study, we conducted a summer sampling of carabid beetles in eastern Australia to identify their associated parasitic mites. Here, we describe three new species of the genus Eutarsopolipus from under the elytra (forewings) of three native carabid species (Coleoptera: Carabidae): Eutarsopolipus paryavae n. sp.

View Article and Find Full Text PDF

Island ecosystems, which often contain undescribed insects and small populations of single island endemics, are at risk from diverse threats. The spread of pathogens is a major factor affecting not just pollinator species themselves, but also posing significant knock-on effects to often fragile island ecosystems through disruption of pollination networks. Insects are vulnerable to diverse pathogens and these can be introduced to islands in a number of ways, e.

View Article and Find Full Text PDF

Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer.

View Article and Find Full Text PDF

Background: The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics.

View Article and Find Full Text PDF