Publications by authors named "Markus Rethmeier"

The zymogens of the neutrophil serine proteases elastase, proteinase 3, and cathepsin G are converted proteolytically into their pro-inflammatory active forms by the action of cathepsin C. The inhibition of this cysteine protease therefore is an interesting therapeutic approach for the treatment of inflammatory disorders with a high neutrophil burden such as COPD. Based on E-64c-hydrazide as lead structure, we have recently developed a covalently acting cathepsin C inhibitor using a n-butyl residue attached at the amine nitrogen of the hydrazide moiety to efficiently address the deep hydrophobic S2 pocket.

View Article and Find Full Text PDF

Cathepsin C is a papain-like cysteine protease with dipeptidyl aminopeptidase activity that is thought to activate various granule-associated serine proteases. Its exopeptidase activity is structurally explained by the so-called exclusion domain, which blocks the active-site cleft beyond the S2 site and, with its Asp 1 residue, provides an anchoring point for the N terminus of peptide and protein substrates. Here, the hydrazide of (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane (E-64c) (k2/Ki =140±5 M(-1)  s(-1)) is demonstrated to be a lead structure for the development of irreversible cathepsin C inhibitors.

View Article and Find Full Text PDF