Publications by authors named "Markus Ramsauer"

Background: The prevalence of non-alcoholic fatty liver disease is increasing worldwide and an effective and safe pharmacological treatment is needed. We investigated whether inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1, also known as HSD11B1) by RO5093151 could safely and effectively decrease liver-fat content in patients with this disorder.

Methods: We did this phase 1b trial at four centres in Germany and Austria.

View Article and Find Full Text PDF

We used a 3D in-vitro model of angiogenesis to investigate the effects of different growth factors on vessel formation and stabilization in vitro. Vascular endothelial growth factor (VEGF) was the only factor that induced the formation, elongation and sprouting of capillary-like structures (CLS) by bovine retinal capillary endothelial cells (BREC), an effect that was dose-dependent and saturable. Basic fibroblast growth factor 2 (FGF2) enhanced capillary formation in the presence of VEGF, leading to a more complex network of CLS and a higher rate of BrdU incorporation than VEGF alone, indicating that whereas VEGF acts as a morphogen, FGF2 is primarily a mitogen.

View Article and Find Full Text PDF

The vasculature forms during development via two processes, vasculogenesis and angiogenesis, in which vessels form de novo from angioblast precursors or as sprouts from pre-existing vessels, respectively. A common and critical aspect of both processes is vascular morphogenesis, which includes branching of endothelial cell cords and lumen formation. Although ample evidence support the central role of vascular endothelial growth factor (VEGF) in both vasculogenesis and angiogenesis, the role of VEGF in vascular morphogenesis is unclear and little is known about the regulation of vascular morphogenesis, in general.

View Article and Find Full Text PDF

Cerebral pericytes constitute an essential component of the blood-brain barrier (BBB) and are involved in blood vessel assembly. Recently, we reported on the induction of a BBB-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) in coculture with cerebral endothelial cells. We completed this in vitro BBB system by adding astrocytes to these mixed cultures of endothelial cells and pericytes.

View Article and Find Full Text PDF