Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells.
View Article and Find Full Text PDFThe underlying data demonstrates that the expression of endoglin in murine melanoma cells influences melanin production in the cells. Also, the data shows that melanin production is further increased when the cells are subcutaneously implanted in mice models and that the high melanin production prevents detection of the cells by fluorescence imaging. The processed data presented herein is related to a research article by Tansi et al.
View Article and Find Full Text PDFBackground: Endoglin (CD105) is overexpressed on tumor cells and tumor vasculatures, making it a potential target for diagnostic imaging and therapy of different neoplasms. Therefore, studies on nanocarrier systems designed for endoglin-directed diagnostic and drug delivery purposes would expose the feasibility of targeting endoglin with therapeutics.
Methods: Liposomes carrying high concentrations of a near-infrared fluorescent dye in the aqueous interior were prepared by the lipid film hydration and extrusion procedure, then conjugated to single chain antibody fragments either selective for murine endoglin (termed mEnd-IL) or directed towards human endoglin (termed hEnd-IL).
Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g.
View Article and Find Full Text PDFOptical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity.
View Article and Find Full Text PDFMolecular and cellular changes that precede the invasive growth of solid tumors include the release of proteolytic enzymes and peptides in the tumor stroma, the recruitment of phagocytic and lymphoid infiltrates and alteration of the extracellular matrix. The reactive tumor stroma consists of a large number of myofibroblasts, characterized by high expression of fibroblast activation protein alpha (FAP). FAP, a type-II transmembrane sialoglycoprotein is an attractive target in diagnosis and therapy of several pathologic disorders especially cancer.
View Article and Find Full Text PDFIn the past decade, there has been significant progress in the development of water soluble near-infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650-900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto-fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently.
View Article and Find Full Text PDF