Publications by authors named "Markus Pristovsek"

This article describes GaN/AlN heterostructures for ultraviolet-C (UVC) emitters with multiple (up to 400 periods) two-dimensional (2D)-quantum disk/quantum well structures with the same GaN nominal thicknesses of 1.5 and 16 ML-thick AlN barrier layers, which were grown by plasma-assisted molecular-beam epitaxy in a wide range of gallium and activated nitrogen flux ratios (Ga/N*) on -sapphire substrates. An increase in the Ga/N* ratio from 1.

View Article and Find Full Text PDF

This Letter describes the impact of shape on micro light-emitting diodes (µLEDs), analyzing 400 µm area µLEDs with various mesa shapes (circular, square, and stripes). Appropriate external quantum efficiency (EQE) can yield internal quantum efficiency (IQE) which decreases with increasing peripheral length of the mesas. However, light extraction efficiency (ηe) increased with increasing mesa periphery.

View Article and Find Full Text PDF

We present an extensive theoretical and experimental study to identify the effect on the Raman spectrum due to interface interdiffusion between GaN and AlN layers in short-period GaN/AlN superlattices (SLs). The Raman spectra for SLs with sharp interfaces and with different degree of interface diffusion are simulated by calculations and within the framework of the random-element isodisplacement model. The comparison of the results of theoretical calculations and experimental data obtained on PA MBE and MOVPE grown SLs, showed that the bands related to (LO) confined phonons are very sensitive to the degree of interface diffusion.

View Article and Find Full Text PDF

A challenging approach, but one providing a key solution to material growth, remote epitaxy (RE)-a novel concept related to van der Waals epitaxy (vdWE)-requires the stability of a two-dimensional (2-D) material. However, when graphene, a representative 2-D material, is present on substrates that have a nitrogen atom, graphene loss occurs. Although this phenomenon has remained a hurdle for over a decade, restricting the advantages of applying graphene in the growth of III-nitride materials, few previous studies have been conducted.

View Article and Find Full Text PDF

GaN nanorods (NRds) with axial InGaN/GaN MQWs insertions are synthesized by an original cost-effective and large-scale nanoimprint-lithography process from an InGaN/GaN MQWs layer grown on c-sapphire substrates. By design, such NRds exhibit a single emission due to the c-axis MQWs. A systematic study of the emission of the NRds by time-resolved luminescence (TR-PL) and power dependence PL shows a diameter-controlled luminescence without significant degradation of the recombination rate thanks to the diameter-controlled strain tuning and QSCE.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) and diamond are promising materials for next-generation electronics and optoelectronics. However, their combination is rarely reported. In this study, we for the first time demonstrate the success to direct growth of two-dimensional (2D) hBN crystal layers on diamond substrates by metalorganic vapor phase epitaxy.

View Article and Find Full Text PDF

Growth of AlGaN layers (0 ≤ x ≤ 1) simultaneously on polar (0001), semipolar ([Formula: see text]3) and ([Formula: see text]), as well as nonpolar ([Formula: see text]) and ([Formula: see text]) AlN templates, which were grown on planar sapphire substrates, has been investigated by metal-organic vapour phase epitaxy. By taking into account anisotropic in-plane strain of semi- and non-polar layers, their aluminium incorporation has been determined by x-ray diffraction analysis. Optical emission energy of the layers was obtained from room-temperature photoluminescence spectra, and their effective bandgap energy was estimated from room-temperature pseudo-dielectric functions.

View Article and Find Full Text PDF

We report on the growth of semi-polar GaN (11[Formula: see text]2) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited.

View Article and Find Full Text PDF