Nicotianamine synthase (NAS) catalyzes the biosynthesis of the low-molecular-mass metal chelator nicotianamine (NA) from the 2-aminobutyrate moieties of three SAM molecules. NA has central roles in metal nutrition and metal homeostasis of flowering plants. The enzymatic function of NAS remains poorly understood.
View Article and Find Full Text PDFIRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type.
View Article and Find Full Text PDFTemperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis.
View Article and Find Full Text PDFThe beneficial root-colonizing fungus mediates plant growth promotion (PGP) upon phosphate (Pi) starvation in . This activity is dependent on the Trp metabolism of the host, including indole glucosinolate (IG) hydrolysis. Here, we show that resolves several Pi starvation-induced molecular processes in the host, one of which is the downregulation of auxin signaling in germ-free plants, which is restored in the presence of the fungus.
View Article and Find Full Text PDFNitrilases are oligomeric, helix-forming enzymes from plants, fungi and bacteria that are involved in the metabolism of various natural and artificial nitriles. These biotechnologically important enzymes are often specific for certain substrates, but directed attempts at modifying their substrate specificities by exchanging binding pocket residues have been largely unsuccessful. Thus, the basis for their selectivity is still unknown.
View Article and Find Full Text PDFNitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis.
View Article and Find Full Text PDFPlant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp.
View Article and Find Full Text PDFMetabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins.
View Article and Find Full Text PDFPlants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.
View Article and Find Full Text PDFBerberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis.
View Article and Find Full Text PDFAll members of the YidC/Oxa1/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform of Alb3, named Alb4. Analysis of Arabidopsis knockout mutant lines shows that Alb4 is required in assembly and/or stability of the CF1CF0-ATP synthase (ATPase).
View Article and Find Full Text PDFNitrilases, enzymes that catalyze the hydrolysis of organic cyanides, are ubiquitous in the plant kingdom. The typical plant nitrilase is a nitrilase 4 homolog which is involved in the cyanide detoxification pathway. In this pathway, nitrilase 4 converts beta-cyanoalanine, the intermediate product of cyanide detoxification, into asparagine, aspartic acid and ammonia.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
May 2009
In previous reports we have reported that theobroxide induces characteristic accumulation of allene oxide cyclase (AOC; EC 5.3.99.
View Article and Find Full Text PDFThe potential of plant nitrilases to convert indole-3-acetonitrile into the plant growth hormone indole-3-acetic acid has earned them the interim title of "key enzyme in auxin biosynthesis". Although not widely recognized, this view has changed considerably in the last few years. Recent work on plant nitrilases has shown them to be involved in the process of cyanide detoxification, in the catabolism of cyanogenic glycosides and presumably in the catabolism of glucosinolates.
View Article and Find Full Text PDFNitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P.
View Article and Find Full Text PDFLotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases was isolated from L.
View Article and Find Full Text PDFThe auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA. Zmnit2 transposon insertion mutants were compromised in root growth in young seedlings and sensitivity to indole-3-acetonitrile, and accumulated lower quantities of IAA conjugates in kernels and root tips, suggesting a substantial contribution of ZmNIT2 to total IAA biosynthesis in maize.
View Article and Find Full Text PDFGene expression in chloroplasts is regulated mainly at the posttranscriptional level. In the green alga Chlamydomonas reinhardtii, synthesis of the D2 protein (PsbD), which is the rate-determining subunit for the assembly of photosystem II, depends on the RNA stability factor Nac2. In addition, the RNA binding protein RBP40 has been implicated in translational control via a U-rich element in the 5' untranslated region (5'UTR) of the psbD mRNA.
View Article and Find Full Text PDFMembers of the nitrilase 4 (NIT4) family of higher plants catalyze the conversion of beta-cyanoalanine to aspartic acid and asparagine, a key step in cyanide detoxification. Grasses (Poaceae) possess two different NIT4 homologs (NIT4A and NIT4B), but none of the recombinant Poaceae enzymes analyzed showed activity with beta-cyanoalanine, whereas protein extracts of the same plants clearly posses this activity. Sorghum bicolor contains three NIT4 isoforms SbNIT4A, SbNIT4B1, and SbNIT4B2.
View Article and Find Full Text PDFTwo genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+-binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa.
View Article and Find Full Text PDFDuring fungal fruiting body development, specialized cell types differentiate from vegetative mycelium. We have isolated a protein from the ascomycete Sordaria macrospora that is not present during vegetative growth but accumulates in perithecia. The protein was sequenced by mass spectrometry and the corresponding gene was termed app (abundant perithecial protein).
View Article and Find Full Text PDFIntron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60.
View Article and Find Full Text PDFThe parasitic flagellate Trichomonas vaginalis contains hydrogenosomes, anaerobic organelles related to mitochondria, that generate ATP from the fermentative conversion of pyruvate to acetate, CO2 and molecular hydrogen. Although an essentially anaerobic organism, Trichomonas encounters low oxygen concentrations in its natural habitat and has to protect itself, and especially the oxygen-sensitve enzymes of hydrogenosomal metabolism, from oxidative damage. We have identified two novel proteins in the hydrogenosomal proteome with strong similarity to two putative prokaryotic peroxidases, rubrerythrin and periplasmic thiol peroxidase.
View Article and Find Full Text PDFThe fungus Venturia inaequalis clone No. 36 isolated from Malus domestica cv. Gloster excretes a melanoprotein of 36 kDa in relatively high amounts during growth in liquid culture.
View Article and Find Full Text PDF